Predicting the likelihood and intensity of mosquito infection from sex specific Plasmodium falciparum gametocyte density

  1. John Bradley
  2. Will Stone
  3. Dari FA DA
  4. Isabelle Morlais
  5. Alassane Dicko
  6. Anna Cohuet
  7. Wamdaogo M Guelbeogo
  8. Almahamoudou Mahamar
  9. Sandrine Nsango
  10. Harouna M Soumaré
  11. Halimatou Diawara
  12. Kjerstin Lanke
  13. Wouter Graumans
  14. Rianne Siebelink-Stoter
  15. Marga van de Vegte-Bolmer
  16. Ingrid Chen
  17. Alfred Tiono
  18. Bronner Pamplona Gonçalves
  19. Roland Gosling
  20. Robert W Sauerwein
  21. Chris Drakeley
  22. Thomas S Churcher  Is a corresponding author
  23. Teun Bousema
  1. London School of Hygiene and Tropical Medicine, United Kingdom
  2. Radboud University Medical Center, Netherlands
  3. Institut de Recherche en Sciences de la Santé, Burkina Faso
  4. Institut de Recherche pour le Développement, France
  5. University of Science, Techniques and Technologies of Bamako, Mali
  6. Centre National de Recherche et de Formation sur le Paludisme, Burkina Faso
  7. Université de Douala, Cameroon
  8. University of California, San Francisco, United States
  9. Imperial College London, United Kingdom

Abstract

Understanding the importance of gametocyte density on human-to-mosquito transmission is of immediate relevance to malaria control. Previous work (Churcher et al., 2013) indicated a complex relationship between gametocyte density and mosquito infection. Here we use data from 148 feeding experiments on naturally infected gametocyte carriers to show that the relationship is much simpler and depends on both female and male parasite density. The proportion of mosquitoes infected is primarily determined by the density of female gametocytes though transmission from low gametocyte densities may be impeded by a lack of male parasites. Improved precision of gametocyte quantification simplifies the shape of the relationship with infection increasing rapidly before plateauing at higher densities. The mean number of oocysts per mosquito rises quickly with gametocyte density but continues to increase across densities examined. The work highlights the importance of measuring both female and male gametocyte density when estimating the human reservoir of infection.

Data availability

All raw data can be found in Source Data Supplements to the relevant figures

Article and author information

Author details

  1. John Bradley

    MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9449-4608
  2. Will Stone

    Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Dari FA DA

    Institut de Recherche en Sciences de la Santé, Bobo-Dioulasso, Burkina Faso
    Competing interests
    The authors declare that no competing interests exist.
  4. Isabelle Morlais

    MIVEGEC, Institut de Recherche pour le Développement, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Alassane Dicko

    Malaria Research and Training Centre, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
    Competing interests
    The authors declare that no competing interests exist.
  6. Anna Cohuet

    MIVEGEC, Institut de Recherche pour le Développement, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Wamdaogo M Guelbeogo

    Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
    Competing interests
    The authors declare that no competing interests exist.
  8. Almahamoudou Mahamar

    MIVEGEC, Institut de Recherche pour le Développement, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Sandrine Nsango

    Faculté de Médecine et des Sciences Pharmaceutiques, Université de Douala, Douala, Cameroon
    Competing interests
    The authors declare that no competing interests exist.
  10. Harouna M Soumaré

    MIVEGEC, Institut de Recherche pour le Développement, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Halimatou Diawara

    MIVEGEC, Institut de Recherche pour le Développement, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Kjerstin Lanke

    Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Wouter Graumans

    Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3952-6491
  14. Rianne Siebelink-Stoter

    Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  15. Marga van de Vegte-Bolmer

    Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  16. Ingrid Chen

    Global Health Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Alfred Tiono

    Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
    Competing interests
    The authors declare that no competing interests exist.
  18. Bronner Pamplona Gonçalves

    Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Roland Gosling

    Global Health Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Robert W Sauerwein

    Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  21. Chris Drakeley

    Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4863-075X
  22. Thomas S Churcher

    MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
    For correspondence
    thomas.churcher@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8442-0525
  23. Teun Bousema

    Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2666-094X

Funding

Bill and Melinda Gates Foundation (AFIRM OPP1034789)

  • Chris Drakeley
  • Teun Bousema

European Commission (ERC-2014-StG 639776)

  • Will Stone
  • Teun Bousema

PATH (Malaria Vaccine Iniative)

  • Dari FA DA
  • Isabelle Morlais
  • Anna Cohuet
  • Teun Bousema

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Urszula Krzych, Walter Reed Army Institute of Research, United States

Version history

  1. Received: December 21, 2017
  2. Accepted: May 26, 2018
  3. Accepted Manuscript published: May 31, 2018 (version 1)
  4. Version of Record published: June 21, 2018 (version 2)

Copyright

© 2018, Bradley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,945
    views
  • 498
    downloads
  • 89
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John Bradley
  2. Will Stone
  3. Dari FA DA
  4. Isabelle Morlais
  5. Alassane Dicko
  6. Anna Cohuet
  7. Wamdaogo M Guelbeogo
  8. Almahamoudou Mahamar
  9. Sandrine Nsango
  10. Harouna M Soumaré
  11. Halimatou Diawara
  12. Kjerstin Lanke
  13. Wouter Graumans
  14. Rianne Siebelink-Stoter
  15. Marga van de Vegte-Bolmer
  16. Ingrid Chen
  17. Alfred Tiono
  18. Bronner Pamplona Gonçalves
  19. Roland Gosling
  20. Robert W Sauerwein
  21. Chris Drakeley
  22. Thomas S Churcher
  23. Teun Bousema
(2018)
Predicting the likelihood and intensity of mosquito infection from sex specific Plasmodium falciparum gametocyte density
eLife 7:e34463.
https://doi.org/10.7554/eLife.34463

Share this article

https://doi.org/10.7554/eLife.34463

Further reading

    1. Epidemiology and Global Health
    Sean V Connelly, Nicholas F Brazeau ... Jeffrey A Bailey
    Research Article

    Background:

    The Zanzibar archipelago of Tanzania has become a low-transmission area for Plasmodium falciparum. Despite being considered an area of pre-elimination for years, achieving elimination has been difficult, likely due to a combination of imported infections from mainland Tanzania and continued local transmission.

    Methods:

    To shed light on these sources of transmission, we applied highly multiplexed genotyping utilizing molecular inversion probes to characterize the genetic relatedness of 282 P. falciparum isolates collected across Zanzibar and in Bagamoyo district on the coastal mainland from 2016 to 2018.

    Results:

    Overall, parasite populations on the coastal mainland and Zanzibar archipelago remain highly related. However, parasite isolates from Zanzibar exhibit population microstructure due to the rapid decay of parasite relatedness over very short distances. This, along with highly related pairs within shehias, suggests ongoing low-level local transmission. We also identified highly related parasites across shehias that reflect human mobility on the main island of Unguja and identified a cluster of highly related parasites, suggestive of an outbreak, in the Micheweni district on Pemba island. Parasites in asymptomatic infections demonstrated higher complexity of infection than those in symptomatic infections, but have similar core genomes.

    Conclusions:

    Our data support importation as a main source of genetic diversity and contribution to the parasite population in Zanzibar, but they also show local outbreak clusters where targeted interventions are essential to block local transmission. These results highlight the need for preventive measures against imported malaria and enhanced control measures in areas that remain receptive to malaria reemergence due to susceptible hosts and competent vectors.

    Funding:

    This research was funded by the National Institutes of Health, grants R01AI121558, R01AI137395, R01AI155730, F30AI143172, and K24AI134990. Funding was also contributed from the Swedish Research Council, Erling-Persson Family Foundation, and the Yang Fund. RV acknowledges funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 program supported by the European Union. RV also acknowledges funding by Community Jameel.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Patrick E Brown, Sze Hang Fu ... Ab-C Study Collaborators
    Research Article

    Background: Few national-level studies have evaluated the impact of 'hybrid' immunity (vaccination coupled with recovery from infection) from the Omicron variants of SARS-CoV-2.

    Methods: From May 2020 to December 2022, we conducted serial assessments (each of ~4000-9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels.

    Results: Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than six months earlier, spike levels fell notably and continuously for the nine months post-vaccination. By contrast, among adults infected within six months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than six months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% CI 11-14%) before omicron to 78% (76-80%) by December 2022, equating to 25 million infected adults cumulatively. However, the COVID-19 weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity.

    Conclusions: Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected dried blood spots are a practicable biological surveillance platform.

    Funding: Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael's Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.