Automated analysis of long-term grooming behavior in Drosophila using a k-nearest neighbors classifier

  1. Bing Qiao
  2. Chiyuan Li
  3. Victoria W Allen
  4. Mimi M Shirasu-Hiza
  5. Sheyum Syed  Is a corresponding author
  1. University of Miami, United States
  2. Columbia University, United States

Abstract

Despite being pervasive, the control of programmed grooming is poorly understood. We addressed this gap by developing a high-throughput platform that allows long-term detection of grooming in Drosophila melanogaster. In our method, a k-nearest neighbors algorithm automatically classifies fly behavior and finds grooming events with over 90% accuracy in diverse genotypes. Our data show that flies spend ~13% of their waking time grooming, driven largely by two major internal programs. One of these programs regulates the timing of grooming and involves the core circadian clock components cycle, clock, and period. The second program regulates the duration of grooming and, while dependent on cycle and clock, appears to be independent of period. This emerging dual control model in which one program controls timing and another controls duration, resembles the two-process regulatory model of sleep. Together, our quantitative approach presents the opportunity for further dissection of mechanisms controlling long-term grooming in Drosophila.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Bing Qiao

    Department of Physics, University of Miami, Coral Gables, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Chiyuan Li

    Department of Physics, University of Miami, Coral Gables, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Victoria W Allen

    Department of Genetics and Development, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mimi M Shirasu-Hiza

    Department of Genetics and Development, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Sheyum Syed

    Department of Physics, University of Miami, Coral Gables, United States
    For correspondence
    s.syed@miami.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4642-6678

Funding

National Science Foundation (IOS-1656603)

  • Sheyum Syed

National Institutes of Health (R01GM105775)

  • Mimi M Shirasu-Hiza

National Institutes of Health (R01AG045842)

  • Mimi M Shirasu-Hiza

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Qiao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,981
    views
  • 453
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bing Qiao
  2. Chiyuan Li
  3. Victoria W Allen
  4. Mimi M Shirasu-Hiza
  5. Sheyum Syed
(2018)
Automated analysis of long-term grooming behavior in Drosophila using a k-nearest neighbors classifier
eLife 7:e34497.
https://doi.org/10.7554/eLife.34497

Share this article

https://doi.org/10.7554/eLife.34497

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Natanael Spisak, Gabriel Athènes ... Aleksandra M Walczak
    Tools and Resources

    B-cell repertoires are characterized by a diverse set of receptors of distinct specificities generated through two processes of somatic diversification: V(D)J recombination and somatic hypermutations. B cell clonal families stem from the same V(D)J recombination event, but differ in their hypermutations. Clonal families identification is key to understanding B-cell repertoire function, evolution and dynamics. We present HILARy (High-precision Inference of Lineages in Antibody Repertoires), an efficient, fast and precise method to identify clonal families from single- or paired-chain repertoire sequencing datasets. HILARy combines probabilistic models that capture the receptor generation and selection statistics with adapted clustering methods to achieve consistently high inference accuracy. It automatically leverages the phylogenetic signal of shared mutations in difficult repertoire subsets. Exploiting the high sensitivity of the method, we find the statistics of evolutionary properties such as the site frequency spectrum and 𝑑𝑁∕𝑑𝑆 ratio do not depend on the junction length. We also identify a broad range of selection pressures spanning two orders of magnitude.

    1. Cell Biology
    2. Computational and Systems Biology
    Trine Line Hauge Okholm, Andreas Bjerregaard Kamstrup ... Christian Kroun Damgaard
    Research Article

    Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.