A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo

Abstract

In recent years, multielectrode arrays and large silicon probes have been developed to record simultaneously between hundreds and thousands of electrodes packed with a high density. However, they require novel methods to extract the spiking activity of large ensembles of neurons. Here we developed a new toolbox to sort spikes from these large-scale extracellular data. To validate our method, we performed simultaneous extracellular and loose patch recordings in rodents to obtain 'ground truth' data, where the solution to this sorting problem is known for one cell. The performance of our algorithm was always close to the best expected performance, over a broad range of signal to noise ratios, in vitro and in vivo. The algorithm is entirely parallelized and has been successfully tested on recordings with up to 4225 electrodes. Our toolbox thus offers a generic solution to sort accurately spikes for up to thousands of electrodes.

Data availability

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Pierre Yger

    Physiology and Information Processing, Institut de la Vision - INSERM URMS 968, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Giulia LB Spampinato

    Physiology and Information Processing, Institut de la Vision - INSERM URMS 968, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Elric Esposito

    Physiology and Information Processing, Institut de la Vision - INSERM URMS 968, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Baptiste Lefebvre

    Physiology and Information Processing, Institut de la Vision - INSERM URMS 968, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Stéphane Deny

    Physiology and Information Processing, Institut de la Vision - INSERM URMS 968, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Christophe Gardella

    Physiology and Information Processing, Institut de la Vision - INSERM URMS 968, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3204-9012
  7. Marcel Stimberg

    Physiology and Information Processing, Institut de la Vision - INSERM URMS 968, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2648-4790
  8. Florian Jetter

    Neurophysics group, The Natural and Medical Sciences Institute, Reutlingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Guenther Zeck

    Neurophysics group, The Natural and Medical Sciences Institute, Reutlingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Serge Picaud

    Physiology and Information Processing, Institut de la Vision - INSERM URMS 968, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Jens Duebel

    Physiology and Information Processing, Institut de la Vision - INSERM URMS 968, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Olivier Marre

    Physiology and Information Processing, Institut de la Vision - INSERM URMS 968, Paris, France
    For correspondence
    olivier.marre@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0090-6190

Funding

Agence Nationale de la Recherche (TRAJECTORY)

  • Olivier Marre

European Commission (ERC StG 309776)

  • Jens Duebel

National Institutes of Health (U01NS090501)

  • Olivier Marre

Foundation Fighting Blindness

  • Serge Picaud

Agence Nationale de la Recherche (ANR-14-CE13-0003)

  • Pierre Yger

Agence Nationale de la Recherche (ANR-10-LABX-65)

  • Serge Picaud

European Commission (FP7-604102)

  • Olivier Marre

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were performed in accordance with institutional animal care standards, using protocol (#00847.02) of the Institut de la Vision (Agreement number A751202). The protocol was approved by the Charles Darwin ethic committee (CEEACD/N{degree sign}5)

Copyright

© 2018, Yger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,924
    views
  • 1,841
    downloads
  • 310
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Pierre Yger
  2. Giulia LB Spampinato
  3. Elric Esposito
  4. Baptiste Lefebvre
  5. Stéphane Deny
  6. Christophe Gardella
  7. Marcel Stimberg
  8. Florian Jetter
  9. Guenther Zeck
  10. Serge Picaud
  11. Jens Duebel
  12. Olivier Marre
(2018)
A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo
eLife 7:e34518.
https://doi.org/10.7554/eLife.34518

Share this article

https://doi.org/10.7554/eLife.34518

Further reading

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.