1. Cell Biology
  2. Computational and Systems Biology
Download icon

Transcriptional profiling reveals extraordinary diversity among skeletal muscle tissues

  1. Erin E Terry
  2. Xiping Zhang
  3. Christy Hoffmann
  4. Laura D Hughes
  5. Scott A Lewis
  6. Jiajia Li
  7. Matthew J Wallace
  8. Lance Riley
  9. Collin M Douglas
  10. Miguel A Gutierrez-Montreal
  11. Nicholas F Lahens
  12. Ming C Gong
  13. Francisco Andrade
  14. Karyn A Esser
  15. Michael E Hughes  Is a corresponding author
  1. Washington University School of Medicine, United States
  2. University of Florida, United States
  3. The Scripps Research Institute, United States
  4. University of Pennsylvania, United States
  5. University of Kentucky, United States
Tools and Resources
  • Cited 32
  • Views 5,778
  • Annotations
Cite this article as: eLife 2018;7:e34613 doi: 10.7554/eLife.34613

Abstract

Skeletal muscle comprises a family of diverse tissues with highly specialized functions. Many acquired diseases, including HIV and COPD, affect specific muscles while sparing others. Even monogenic muscular dystrophies selectively affect certain muscle groups. These observations suggest that factors intrinsic to muscle tissues influence their resistance to disease. Nevertheless, most studies have not addressed transcriptional diversity among skeletal muscles. Here we use RNAseq to profile mRNA expression in skeletal, smooth, and cardiac muscle tissues from mice and rats. Our data set, MuscleDB, reveals extensive transcriptional diversity, with greater than 50% of transcripts differentially expressed among skeletal muscle tissues. We detect mRNA expression of hundreds of putative myokines that may underlie the endocrine functions of skeletal muscle. We identify candidate genes that may drive tissue specialization, including Smarca4, Vegfa, and Myostatin. By demonstrating the intrinsic diversity of skeletal muscles, these data provide a resource for studying the mechanisms of tissue specialization.

Data availability

RNA Sequencing data have been deposited in GEO under accession code GSE100505. Analyzed data are available on http://muscledb.org.

The following data sets were generated

Article and author information

Author details

  1. Erin E Terry

    Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1334-4238
  2. Xiping Zhang

    Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Christy Hoffmann

    Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura D Hughes

    Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Scott A Lewis

    Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jiajia Li

    Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Matthew J Wallace

    Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lance Riley

    Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Collin M Douglas

    Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Miguel A Gutierrez-Montreal

    Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Nicholas F Lahens

    Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3965-5624
  12. Ming C Gong

    Department of Physiology, School of Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Francisco Andrade

    Department of Physiology, School of Medicine, University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Karyn A Esser

    Department of Physiology and Functional Genomics, 2.Department of Physiology and Functional Genomics, University of Florida, Gainsville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5791-1441
  15. Michael E Hughes

    Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, United States
    For correspondence
    michael.hughes@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8828-3732

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR069266)

  • Karyn A Esser
  • Michael E Hughes

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR066082)

  • Karyn A Esser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were conducted in compliance with the guidelines of the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC) and were approved by the Institutional Animal Care and Use Committee at University of Kentucky (IACUC assurance number: A-3336-01).

Reviewing Editor

  1. Andrew Brack, University of California, San Francisco, United States

Publication history

  1. Received: December 22, 2017
  2. Accepted: May 15, 2018
  3. Accepted Manuscript published: May 29, 2018 (version 1)
  4. Version of Record published: June 19, 2018 (version 2)

Copyright

© 2018, Terry et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,778
    Page views
  • 814
    Downloads
  • 32
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Asha Mary Joseph et al.
    Research Article

    Translesion synthesis (TLS) is a highly conserved mutagenic DNA lesion tolerance pathway, which employs specialized, low-fidelity DNA polymerases to synthesize across lesions. Current models suggest that activity of these polymerases is predominantly associated with ongoing replication, functioning either at or behind the replication fork. Here we provide evidence for DNA damage-dependent function of a specialized polymerase, DnaE2, in replication-independent conditions. We develop an assay to follow lesion repair in non-replicating Caulobacter and observe that components of the replication machinery localize on DNA in response to damage. These localizations persist in the absence of DnaE2 or if catalytic activity of this polymerase is mutated. Single-stranded DNA gaps for SSB binding and low-fidelity polymerase-mediated synthesis are generated by nucleotide excision repair, as replisome components fail to localize in the absence of NER. This mechanism of gap-filling facilitates cell cycle restoration when cells are released into replication-permissive conditions. Thus, such cross-talk (between activity of NER and specialized polymerases in subsequent gap-filling) helps preserve genome integrity and enhances survival in a replication-independent manner.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Marzia Munafò et al.
    Research Article

    The Nuclear Pore Complex (NPC) is the principal gateway between nucleus and cytoplasm that enables exchange of macromolecular cargo. Composed of multiple copies of ~30 different nucleoporins (Nups), the NPC acts as a selective portal, interacting with factors which individually license passage of specific cargo classes. Here we show that two Nups of the inner channel, Nup54 and Nup58, are essential for transposon silencing via the PIWI-interacting RNA (piRNA) pathway in the Drosophila ovary. In ovarian follicle cells, loss of Nup54 and Nup58 results in compromised piRNA biogenesis exclusively from the flamenco locus, whereas knockdowns of other NPC subunits have widespread consequences. This provides evidence that some nucleoporins can acquire specialised roles in tissue-specific contexts. Our findings consolidate the idea that the NPC has functions beyond simply constituting a barrier to nuclear/cytoplasmic exchange, as genomic loci subjected to strong selective pressure can exploit NPC subunits to facilitate their expression.