1. Developmental Biology
  2. Evolutionary Biology
Download icon

Decoupling from yolk sac is required for extraembryonic tissue spreading in the scuttle fly Megaselia abdita

  1. Francesca Caroti
  2. Everardo González Avalos
  3. Viola Noeske
  4. Paula González Avalos
  5. Dimitri Kromm
  6. Maike Wosch
  7. Lucas Schütz
  8. Lars Hufnagel
  9. Steffen Lemke  Is a corresponding author
  1. Ruprecht Karls University, Germany
  2. Ruprecht Karls Universität, Germany
  3. European Molecular Biology Laboratory, Germany
Research Article
  • Cited 3
  • Views 837
  • Annotations
Cite this article as: eLife 2018;7:e34616 doi: 10.7554/eLife.34616

Abstract

Extraembryonic tissues contribute to animal development, which often entails spreading over embryo or yolk. Apart from changes in cell shape, the requirements for this tissue spreading are not well understood. Here we analyze spreading of the extraembryonic serosa in the scuttle fly Megaselia abdita. The serosa forms from a columnar blastoderm anlage, becomes a squamous epithelium, and eventually spreads over the embryo proper. We describe the dynamics of this process in long-term, whole-embryo time-lapse recordings, demonstrating that free serosa spreading is preceded by a prolonged pause in tissue expansion. Closer examination of this pause reveals mechanical coupling to the underlying yolk sac, which is later released. We find mechanical coupling prolonged and serosa spreading impaired after knockdown of M. abdita Matrix metalloprotease 1. We conclude that tissue-tissue interactions provide a critical functional element to constrain spreading epithelia.

Article and author information

Author details

  1. Francesca Caroti

    Centre for Organismal Studies Heidelberg, Ruprecht Karls University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Everardo González Avalos

    Centre for Organismal Studies Heidelberg, Ruprecht Karls University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Viola Noeske

    Centre for Organismal Studies Heidelberg, Ruprecht Karls University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Paula González Avalos

    Centre for Organismal Studies Heidelberg, Ruprecht Karls University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Dimitri Kromm

    Centre for Organismal Studies Heidelberg, Ruprecht Karls University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Maike Wosch

    Centre for Organismal Studies Heidelberg, Ruprecht Karls University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Lucas Schütz

    Centre for Organismal Studies Heidelberg, Ruprecht Karls Universität, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Lars Hufnagel

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Steffen Lemke

    Centre for Organismal Studies Heidelberg, Ruprecht Karls University, Heidelberg, Germany
    For correspondence
    steffen.lemke@cos.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5807-2865

Funding

Deutsche Forschungsgemeinschaft (LE 2787/1-1)

  • Francesca Caroti
  • Paula González Avalos
  • Maike Wosch
  • Steffen Lemke

HSFP (RGY0082/2015)

  • Everardo González Avalos
  • Viola Noeske
  • Paula González Avalos

EMBL International PhD Programme

  • Dimitri Kromm

Center of Modeling and Simulation in the Biosciences , University of Heidelberg

  • Lars Hufnagel

HBIGS predoctoral fellowship

  • Lucas Schütz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Publication history

  1. Received: December 22, 2017
  2. Accepted: October 24, 2018
  3. Accepted Manuscript published: October 30, 2018 (version 1)
  4. Version of Record published: November 12, 2018 (version 2)

Copyright

© 2018, Caroti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 837
    Page views
  • 115
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Developmental Biology
    Neta Erez et al.
    Research Article Updated

    A hallmark of aging is loss of differentiated cell identity. Aged Drosophila midgut differentiated enterocytes (ECs) lose their identity, impairing tissue homeostasis. To discover identity regulators, we performed an RNAi screen targeting ubiquitin-related genes in ECs. Seventeen genes were identified, including the deubiquitinase Non-stop (CG4166). Lineage tracing established that acute loss of Non-stop in young ECs phenocopies aged ECs at cellular and tissue levels. Proteomic analysis unveiled that Non-stop maintains identity as part of a Non-stop identity complex (NIC) containing E(y)2, Sgf11, Cp190, (Mod) mdg4, and Nup98. Non-stop ensured chromatin accessibility, maintaining the EC-gene signature, and protected NIC subunit stability. Upon aging, the levels of Non-stop and NIC subunits declined, distorting the unique organization of the EC nucleus. Maintaining youthful levels of Non-stop in wildtype aged ECs safeguards NIC subunits, nuclear organization, and suppressed aging phenotypes. Thus, Non-stop and NIC, supervise EC identity and protects from premature aging.

    1. Developmental Biology
    Feng Wang et al.
    Research Article Updated

    The X-linked gene Rlim plays major roles in female mouse development and reproduction, where it is crucial for the maintenance of imprinted X chromosome inactivation in extraembryonic tissues of embryos. However, while females carrying a systemic Rlim knockout (KO) die around implantation, male Rlim KO mice appear healthy and are fertile. Here, we report an important role for Rlim in testis where it is highly expressed in post-meiotic round spermatids as well as in Sertoli cells. Systemic deletion of the Rlim gene results in lower numbers of mature sperm that contains excess cytoplasm, leading to decreased sperm motility and in vitro fertilization rates. Targeting the conditional Rlim cKO specifically to the spermatogenic cell lineage largely recapitulates this phenotype. These results reveal functions of Rlim in male reproduction specifically in round spermatids during spermiogenesis.