Decoupling from yolk sac is required for extraembryonic tissue spreading in the scuttle fly Megaselia abdita

  1. Francesca Caroti
  2. Everardo González Avalos
  3. Viola Noeske
  4. Paula González Avalos
  5. Dimitri Kromm
  6. Maike Wosch
  7. Lucas Schütz
  8. Lars Hufnagel
  9. Steffen Lemke  Is a corresponding author
  1. Ruprecht Karls University, Germany
  2. Ruprecht Karls Universität, Germany
  3. European Molecular Biology Laboratory, Germany

Abstract

Extraembryonic tissues contribute to animal development, which often entails spreading over embryo or yolk. Apart from changes in cell shape, the requirements for this tissue spreading are not well understood. Here we analyze spreading of the extraembryonic serosa in the scuttle fly Megaselia abdita. The serosa forms from a columnar blastoderm anlage, becomes a squamous epithelium, and eventually spreads over the embryo proper. We describe the dynamics of this process in long-term, whole-embryo time-lapse recordings, demonstrating that free serosa spreading is preceded by a prolonged pause in tissue expansion. Closer examination of this pause reveals mechanical coupling to the underlying yolk sac, which is later released. We find mechanical coupling prolonged and serosa spreading impaired after knockdown of M. abdita Matrix metalloprotease 1. We conclude that tissue-tissue interactions provide a critical functional element to constrain spreading epithelia.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Custom Matlab functions are available via GitHub (https://github.com/lemkelab/SPIMaging).

Article and author information

Author details

  1. Francesca Caroti

    Centre for Organismal Studies Heidelberg, Ruprecht Karls University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Everardo González Avalos

    Centre for Organismal Studies Heidelberg, Ruprecht Karls University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Viola Noeske

    Centre for Organismal Studies Heidelberg, Ruprecht Karls University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Paula González Avalos

    Centre for Organismal Studies Heidelberg, Ruprecht Karls University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Dimitri Kromm

    Centre for Organismal Studies Heidelberg, Ruprecht Karls University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Maike Wosch

    Centre for Organismal Studies Heidelberg, Ruprecht Karls University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Lucas Schütz

    Centre for Organismal Studies Heidelberg, Ruprecht Karls Universität, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Lars Hufnagel

    European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Steffen Lemke

    Centre for Organismal Studies Heidelberg, Ruprecht Karls University, Heidelberg, Germany
    For correspondence
    steffen.lemke@cos.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5807-2865

Funding

Deutsche Forschungsgemeinschaft (LE 2787/1-1)

  • Francesca Caroti
  • Paula González Avalos
  • Maike Wosch
  • Steffen Lemke

HSFP (RGY0082/2015)

  • Everardo González Avalos
  • Viola Noeske
  • Paula González Avalos

EMBL International PhD Programme

  • Dimitri Kromm

Center of Modeling and Simulation in the Biosciences , University of Heidelberg

  • Lars Hufnagel

HBIGS predoctoral fellowship

  • Lucas Schütz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. K VijayRaghavan, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India

Version history

  1. Received: December 22, 2017
  2. Accepted: October 24, 2018
  3. Accepted Manuscript published: October 30, 2018 (version 1)
  4. Version of Record published: November 12, 2018 (version 2)

Copyright

© 2018, Caroti et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,296
    views
  • 155
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Francesca Caroti
  2. Everardo González Avalos
  3. Viola Noeske
  4. Paula González Avalos
  5. Dimitri Kromm
  6. Maike Wosch
  7. Lucas Schütz
  8. Lars Hufnagel
  9. Steffen Lemke
(2018)
Decoupling from yolk sac is required for extraembryonic tissue spreading in the scuttle fly Megaselia abdita
eLife 7:e34616.
https://doi.org/10.7554/eLife.34616

Share this article

https://doi.org/10.7554/eLife.34616

Further reading

    1. Developmental Biology
    Siyuan Cheng, Ivan Fan Xia ... Stefania Nicoli
    Research Article

    Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries and play a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular disease and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating dedifferentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that arterial specification of CoW endothelial cells (ECs) occurs after their migration from cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors after they were recruited to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity and wall shear stress. Furthermore, pulsatile flow induces differentiation of human brain PDGFRB+ mural cells into VSMCs, and blood flow is required for VSMC differentiation on zebrafish CoW arteries. Consistently, flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight blood flow activation of endothelial klf2a as a mechanism regulating initial VSMC differentiation on vertebrate brain arteries.

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.