Microtubules soften due to cross-sectional flattening

  1. Edvin Memet
  2. Feodor Hilitsk
  3. Margaret A Morris
  4. Walter J Schwenger
  5. Zvonimir Dogic
  6. L Mahadevan  Is a corresponding author
  1. Harvard University, United States
  2. Brandeis University, United States
  3. University of California, Santa Barbara, United States

Abstract

We use optical trapping to continuously bend an isolated microtubule while simultaneously measuring the applied force and the resulting filament strain, thus allowing us to determine its elastic properties over a wide range of applied strains. We find that, while in the low-strain regime, microtubules may be quantitatively described in terms of the classical Euler-Bernoulli elastic filament, above a critical strain they deviate from this simple elastic model, showing a softening response with increasing deformations. A three-dimensional thin-shell model, in which the increased mechanical compliance is caused by flattening and eventual buckling of the filament cross-section, captures this softening effect in the high strain regime and yields quantitative values of the effective mechanical properties of microtubules. Our results demonstrate that properties of microtubules are highly dependent on the magnitude of the applied strain and offer a new interpretation for the large variety in microtubule mechanical data measured by different methods.

Data availability

Source data has been provided for Figure 6 along with source code files. Source code files have been provided for Figure 2 along with instructions for generating the data.

The following previously published data sets were used

Article and author information

Author details

  1. Edvin Memet

    Department of Physics, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9414-597X
  2. Feodor Hilitsk

    Department of Physics, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5629-1407
  3. Margaret A Morris

    Department of Physics, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Walter J Schwenger

    Department of Physics, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zvonimir Dogic

    Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. L Mahadevan

    Department of Physics, Harvard University, Cambridge, United States
    For correspondence
    lm@seas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5114-0519

Funding

U.S. Department of Energy (DE-SC0010432TDD)

  • Feodor Hilitsk
  • Zvonimir Dogic

National Science Foundation (NSF-MCB-1329623)

  • Zvonimir Dogic

National Science Foundation (NSF- -CMMI-1068566)

  • Zvonimir Dogic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Memet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,612
    views
  • 535
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Edvin Memet
  2. Feodor Hilitsk
  3. Margaret A Morris
  4. Walter J Schwenger
  5. Zvonimir Dogic
  6. L Mahadevan
(2018)
Microtubules soften due to cross-sectional flattening
eLife 7:e34695.
https://doi.org/10.7554/eLife.34695

Share this article

https://doi.org/10.7554/eLife.34695

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Jisun So, Olivia Strobel ... Hyun Cheol Roh
    Tools and Resources

    Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity. By integrating bulk nuclear RNA-seq from adipocyte nuclei of different sizes, we identify distinct adipocyte subpopulations categorized by size and functionality. These subpopulations follow two divergent trajectories, adaptive and pathological, with their prevalence varying by depot. Specifically, we identify a key molecular feature of dysfunctional hypertrophic adipocytes, a global shutdown in gene expression, along with elevated stress and inflammatory responses. Furthermore, our differential gene expression analysis reveals distinct contributions of adipocyte subpopulations to the overall pathophysiology of adipose tissue. Our study establishes a robust snRNA-seq method, providing novel insights into the biological processes involved in adipose tissue remodeling during obesity, with broader applicability across diverse biological systems.

    1. Cell Biology
    Inês Sequeira
    Insight

    A combination of intermittent fasting and administering Wnt3a proteins to a bone injury can rejuvenate bone repair in aged mice.