Synthetic hormone-responsive transcription factors can monitor and re-program plant development

Abstract

Developmental programs sculpt plant morphology to meet environmental challenges, and these same programs have been manipulated to increase agricultural productivity1,2. Hormones coordinate these programs, creating chemical circuitry3 that has been represented in mathematical models4,5; however, model-guided engineering of plant morphology has been limited by a lack of tools6,7. Here, we introduce a novel set of synthetic and modular hormone activated Cas9-based repressors (HACRs) in Arabidopsis thaliana that respond to three hormones: auxin, gibberellins and jasmonates. We demonstrate that HACRs are sensitive to both exogenous hormone treatments and local differences in endogenous hormone levels associated with development. We further show that this capability can be leveraged to reprogram development in an agriculturally relevant manner by changing how the hormonal circuitry regulates target genes. By deploying a HACR to re-parameterize the auxin-induced expression of the auxin transporter PIN-FORMED1 (PIN1), we decreased shoot branching and phyllotactic noise, as predicted by existing models4,5.

Data availability

Links to all plasmid sequences are in manuscript and data analysis code is available on github.

Article and author information

Author details

  1. Arjun Khakhar

    Department of Electrical Engineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4676-6533
  2. Alexander R Leydon

    Department of Biology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew C Lemmex

    Department of Biology, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric Klavins

    Department of Electrical Engineering, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jennifer L Nemhauser

    Department of Biology, University of Washington, Seattle, United States
    For correspondence
    jn7@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8909-735X

Funding

National Science Foundation (MCB-1411949)

  • Eric Klavins

National Institutes of Health (R01-GM107084)

  • Jennifer L Nemhauser

Howard Hughes Medical Institute (Faculty Scholars Program)

  • Jennifer L Nemhauser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Khakhar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,571
    views
  • 1,141
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arjun Khakhar
  2. Alexander R Leydon
  3. Andrew C Lemmex
  4. Eric Klavins
  5. Jennifer L Nemhauser
(2018)
Synthetic hormone-responsive transcription factors can monitor and re-program plant development
eLife 7:e34702.
https://doi.org/10.7554/eLife.34702

Share this article

https://doi.org/10.7554/eLife.34702

Further reading

    1. Plant Biology
    Maryam Rahmati Ishka, Hayley Sussman ... Magdalena M Julkowska
    Research Article

    Soil salinity is one of the major threats to agricultural productivity worldwide. Salt stress exposure alters root and shoots growth rates, thereby affecting overall plant performance. While past studies have extensively documented the effect of salt stress on root elongation and shoot development separately, here we take an innovative approach by examining the coordination of root and shoot growth under salt stress conditions. Utilizing a newly developed tool for quantifying the root:shoot ratio in agar-grown Arabidopsis seedlings, we found that salt stress results in a loss of coordination between root and shoot growth rates. We identify a specific gene cluster encoding domain-of-unknown-function 247 (DUF247), and characterize one of these genes as Salt Root:shoot Ratio Regulator Gene (SR3G). Further analysis elucidates the role of SR3G as a negative regulator of salt stress tolerance, revealing its function in regulating shoot growth, root suberization, and sodium accumulation. We further characterize that SR3G expression is modulated by WRKY75 transcription factor, known as a positive regulator of salt stress tolerance. Finally, we show that the salt stress sensitivity of wrky75 mutant is completely diminished when it is combined with sr3g mutation. Together, our results demonstrate that utilizing root:shoot ratio as an architectural feature leads to the discovery of a new stress resilience gene. The study’s innovative approach and findings not only contribute to our understanding of plant stress tolerance mechanisms but also open new avenues for genetic and agronomic strategies to enhance crop environmental resilience.

    1. Cell Biology
    2. Plant Biology
    Baihong Zhang, Shuqin Huang ... Wenli Chen
    Research Article

    Autophagy-related gene 6 (ATG6) plays a crucial role in plant immunity. Nonexpressor of pathogenesis-related genes 1 (NPR1) acts as a signaling hub of plant immunity. However, the relationship between ATG6 and NPR1 is unclear. Here, we find that ATG6 directly interacts with NPR1. ATG6 overexpression significantly increased nuclear accumulation of NPR1. Furthermore, we demonstrate that ATG6 increases NPR1 protein levels and improves its stability. Interestingly, ATG6 promotes the formation of SINCs (SA-induced NPR1 condensates)-like condensates. Additionally, ATG6 and NPR1 synergistically promote the expression of pathogenesis-related genes. Further results showed that silencing ATG6 in NPR1-GFP exacerbates Pst DC3000/avrRps4 infection, while double overexpression of ATG6 and NPR1 synergistically inhibits Pst DC3000/avrRps4 infection. In summary, our findings unveil an interplay of NPR1 with ATG6 and elucidate important molecular mechanisms for enhancing plant immunity.