Mild myelin disruption elicits early alteration in behavior and proliferation in the subventricular zone

  1. Elizabeth A Gould
  2. Nicolas Busquet
  3. Douglas Shepherd
  4. Robert Dietz
  5. Paco S Herson
  6. Fabio M Simoes de Souza
  7. Anan Li
  8. Nicholas M George
  9. Diego Restrepo  Is a corresponding author
  10. Wendy B Macklin  Is a corresponding author
  1. University of Colorado Anschutz Medical Campus, United States
  2. Federal University of ABC, Brazil
  3. Xuzhou Medical University, China

Abstract

Myelin, the insulating sheath around axons, supports axon function. An important question is the impact of mild myelin disruption. In the absence of the myelin protein proteolipid protein (PLP1), myelin is generated but with age, axonal function/ maintenance is disrupted. Axon disruption occurs in Plp1-null mice as early as 2 months in cortical projection neurons. High-volume cellular quantification techniques revealed a region-specific increase in oligodendrocyte density in the olfactory bulb and rostral corpus callosum that increased during adulthood. A distinct proliferative response of progenitor cells was observed in the subventricular zone (SVZ), while the number and proliferation of parenchymal oligodendrocyte progenitor cells was unchanged. This SVZ proliferative response occurred prior to evidence of axonal disruption. Thus, a novel SVZ response contributes to the region-specific increase in oligodendrocytes in Plp1-null mice. Young adult Plp1-null mice exhibited subtle but substantial behavioral alterations, indicative of an early impact of mild myelin disruption.

Article and author information

Author details

  1. Elizabeth A Gould

    Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicolas Busquet

    Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Douglas Shepherd

    Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Dietz

    Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Paco S Herson

    Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabio M Simoes de Souza

    Center of Mathematics, Computation and Cognition, Federal University of ABC, Sao Bernardo do Campo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Anan Li

    Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Nicholas M George

    Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Diego Restrepo

    Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    Diego.Restrepo@ucdenver.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4972-446X
  10. Wendy B Macklin

    Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    wendy.macklin@ucdenver.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1252-0607

Funding

National Institutes of Health (NS25304)

  • Wendy B Macklin

National Multiple Sclerosis Society

  • Wendy B Macklin

National Institutes of Health (DC00566)

  • Diego Restrepo

National Institutes of Health (DC014253)

  • Diego Restrepo

National Institutes of Health (AG053690)

  • Douglas Shepherd

National Institutes of Health (DC012280)

  • Elizabeth A Gould

National Institutes of Health (NS099042)

  • Elizabeth A Gould

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Beth Stevens, Boston Children's Hospital, Harvard Medical School, United States

Ethics

Animal experimentation: All animals used in this study were treated in accordance with the University of Colorado Animal Care and Use Committee guidelines. The University of Colorado Animal Care and Use Committee approved this study under protocol numbers B-39615(05)1E and 00134.

Version history

  1. Received: January 4, 2018
  2. Accepted: February 1, 2018
  3. Accepted Manuscript published: February 13, 2018 (version 1)
  4. Version of Record published: February 27, 2018 (version 2)

Copyright

© 2018, Gould et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,799
    views
  • 425
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elizabeth A Gould
  2. Nicolas Busquet
  3. Douglas Shepherd
  4. Robert Dietz
  5. Paco S Herson
  6. Fabio M Simoes de Souza
  7. Anan Li
  8. Nicholas M George
  9. Diego Restrepo
  10. Wendy B Macklin
(2018)
Mild myelin disruption elicits early alteration in behavior and proliferation in the subventricular zone
eLife 7:e34783.
https://doi.org/10.7554/eLife.34783

Share this article

https://doi.org/10.7554/eLife.34783

Further reading

    1. Neuroscience
    Cristina Sáenz de Miera, Nicole Bellefontaine ... Carol F Elias
    Research Article

    The hypothalamic ventral premammillary nucleus (PMv) is a glutamatergic nucleus essential for the metabolic control of reproduction. However, conditional deletion of leptin receptor long form (LepRb) in vesicular glutamate transporter 2 (Vglut2) expressing neurons results in virtually no reproductive deficits. In this study, we determined the role of glutamatergic neurotransmission from leptin responsive PMv neurons on puberty and fertility. We first assessed if stimulation of PMv neurons induces luteinizing hormone (LH) release in fed adult females. We used the stimulatory form of designer receptor exclusively activated by designer drugs (DREADDs) in LeprCre (LepRb-Cre) mice. We collected blood sequentially before and for 1 hr after intravenous clozapine-N-oxide injection. LH level increased in animals correctly targeted to the PMv, and LH level was correlated to the number of Fos immunoreactive neurons in the PMv. Next, females with deletion of Slc17a6 (Vglut2) in LepRb neurons (LeprΔVGlut2) showed delayed age of puberty, disrupted estrous cycles, increased gonadotropin-releasing hormone (GnRH) concentration in the axon terminals, and disrupted LH secretion, suggesting impaired GnRH release. To assess if glutamate is required for PMv actions in pubertal development, we generated a Cre-induced reexpression of endogenous LepRb (LeprloxTB) with concomitant deletion of Slc17a6 (Vglut2flox) mice. Rescue of Lepr and deletion of Slc17a6 in the PMv was obtained by stereotaxic injection of an adeno-associated virus vector expressing Cre recombinase. Control LeprloxTB mice with PMv LepRb rescue showed vaginal opening, follicle maturation, and became pregnant, while LeprloxTB;Vglut2flox mice showed no pubertal development. Our results indicate that glutamatergic neurotransmission from leptin sensitive neurons regulates the reproductive axis, and that leptin action on pubertal development via PMv neurons requires Vglut2.

    1. Neuroscience
    Zahra Ghasemahmad, Aaron Mrvelj ... Jeffrey J Wenstrup
    Research Article

    The basolateral amygdala (BLA), a brain center of emotional expression, contributes to acoustic communication by first interpreting the meaning of social sounds in the context of the listener’s internal state, then organizing the appropriate behavioral responses. We propose that modulatory neurochemicals such as acetylcholine (ACh) and dopamine (DA) provide internal-state signals to the BLA while an animal listens to social vocalizations. We tested this in a vocal playback experiment utilizing highly affective vocal sequences associated with either mating or restraint, then sampled and analyzed fluids within the BLA for a broad range of neurochemicals and observed behavioral responses of adult male and female mice. In male mice, playback of restraint vocalizations increased ACh release and usually decreased DA release, while playback of mating sequences evoked the opposite neurochemical release patterns. In non-estrus female mice, patterns of ACh and DA release with mating playback were similar to males. Estrus females, however, showed increased ACh, associated with vigilance, as well as increased DA, associated with reward-seeking. Experimental groups that showed increased ACh release also showed the largest increases in an aversive behavior. These neurochemical release patterns and several behavioral responses depended on a single prior experience with the mating and restraint behaviors. Our results support a model in which ACh and DA provide contextual information to sound analyzing BLA neurons that modulate their output to downstream brain regions controlling behavioral responses to social vocalizations.