1. Neuroscience
Download icon

Mild myelin disruption elicits early alteration in behavior and proliferation in the subventricular zone

  1. Elizabeth A Gould
  2. Nicolas Busquet
  3. Douglas Shepherd
  4. Robert Dietz
  5. Paco S Herson
  6. Fabio M Simoes de Souza
  7. Anan Li
  8. Nicholas M George
  9. Diego Restrepo  Is a corresponding author
  10. Wendy B Macklin  Is a corresponding author
  1. University of Colorado Anschutz Medical Campus, United States
  2. Federal University of ABC, Brazil
  3. Xuzhou Medical University, China
Research Article
  • Cited 10
  • Views 2,170
  • Annotations
Cite this article as: eLife 2018;7:e34783 doi: 10.7554/eLife.34783

Abstract

Myelin, the insulating sheath around axons, supports axon function. An important question is the impact of mild myelin disruption. In the absence of the myelin protein proteolipid protein (PLP1), myelin is generated but with age, axonal function/ maintenance is disrupted. Axon disruption occurs in Plp1-null mice as early as 2 months in cortical projection neurons. High-volume cellular quantification techniques revealed a region-specific increase in oligodendrocyte density in the olfactory bulb and rostral corpus callosum that increased during adulthood. A distinct proliferative response of progenitor cells was observed in the subventricular zone (SVZ), while the number and proliferation of parenchymal oligodendrocyte progenitor cells was unchanged. This SVZ proliferative response occurred prior to evidence of axonal disruption. Thus, a novel SVZ response contributes to the region-specific increase in oligodendrocytes in Plp1-null mice. Young adult Plp1-null mice exhibited subtle but substantial behavioral alterations, indicative of an early impact of mild myelin disruption.

Article and author information

Author details

  1. Elizabeth A Gould

    Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nicolas Busquet

    Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Douglas Shepherd

    Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert Dietz

    Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Paco S Herson

    Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabio M Simoes de Souza

    Center of Mathematics, Computation and Cognition, Federal University of ABC, Sao Bernardo do Campo, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Anan Li

    Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Nicholas M George

    Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Diego Restrepo

    Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    Diego.Restrepo@ucdenver.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4972-446X
  10. Wendy B Macklin

    Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
    For correspondence
    wendy.macklin@ucdenver.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1252-0607

Funding

National Institutes of Health (NS25304)

  • Wendy B Macklin

National Multiple Sclerosis Society

  • Wendy B Macklin

National Institutes of Health (DC00566)

  • Diego Restrepo

National Institutes of Health (DC014253)

  • Diego Restrepo

National Institutes of Health (AG053690)

  • Douglas Shepherd

National Institutes of Health (DC012280)

  • Elizabeth A Gould

National Institutes of Health (NS099042)

  • Elizabeth A Gould

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals used in this study were treated in accordance with the University of Colorado Animal Care and Use Committee guidelines. The University of Colorado Animal Care and Use Committee approved this study under protocol numbers B-39615(05)1E and 00134.

Reviewing Editor

  1. Beth Stevens, Boston Children's Hospital, Harvard Medical School, United States

Publication history

  1. Received: January 4, 2018
  2. Accepted: February 1, 2018
  3. Accepted Manuscript published: February 13, 2018 (version 1)
  4. Version of Record published: February 27, 2018 (version 2)

Copyright

© 2018, Gould et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,170
    Page views
  • 362
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Neuroscience
    Rendong Tang et al.
    Research Article Updated

    Neurons in primate V4 exhibit various types of selectivity for contour shapes, including curves, angles, and simple shapes. How are these neurons organized in V4 remains unclear. Using intrinsic signal optical imaging and two-photon calcium imaging, we observed submillimeter functional domains in V4 that contained neurons preferring curved contours over rectilinear ones. These curvature domains had similar sizes and response amplitudes as orientation domains but tended to separate from these regions. Within the curvature domains, neurons that preferred circles or curve orientations clustered further into finer scale subdomains. Nevertheless, individual neurons also had a wide range of contour selectivity, and neighboring neurons exhibited a substantial diversity in shape tuning besides their common shape preferences. In strong contrast to V4, V1 and V2 did not have such contour-shape-related domains. These findings highlight the importance and complexity of curvature processing in visual object recognition and the key functional role of V4 in this process.

    1. Neuroscience
    James Peak et al.
    Research Article Updated

    The posterior dorsomedial striatum (pDMS) is necessary for goal-directed action; however, the role of the direct (dSPN) and indirect (iSPN) spiny projection neurons in the pDMS in such actions remains unclear. In this series of experiments, we examined the role of pDMS SPNs in goal-directed action in rats and found that whereas dSPNs were critical for goal-directed learning and for energizing the learned response, iSPNs were involved in updating that learning to support response flexibility. Instrumental training elevated expression of the plasticity marker Zif268 in dSPNs only, and chemogenetic suppression of dSPN activity during training prevented goal-directed learning. Unilateral optogenetic inhibition of dSPNs induced an ipsilateral response bias in goal-directed action performance. In contrast, although initial goal-directed learning was unaffected by iSPN manipulations, optogenetic inhibition of iSPNs, but not dSPNs, impaired the updating of this learning and attenuated response flexibility after changes in the action-outcome contingency.