Boosting ATM activity alleviates ageing and extends lifespan in a mouse model of progeria

  1. Minxian Qian
  2. Zuojun Liu
  3. Linyuan Peng
  4. Xiaolong Tang
  5. Fanbiao Meng
  6. Ying Ao
  7. Mingyan Zhou
  8. Ming Wang
  9. Xinyue Cao
  10. Baoming Qin
  11. Zimei Wang
  12. Zhongjun Zhou
  13. Guangming Wang
  14. Zhengliang Gao
  15. Xu Jun
  16. Baohua Liu  Is a corresponding author
  1. Shenzhen University Health Science Center, China
  2. Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, China
  3. The University of Hong Kong, Hong Kong
  4. Tongji University School of Medicine, China

Abstract

DNA damage accumulates with age (Lombard et al., 2005). However, whether and how robust DNA repair machinery promotes longevity is elusive. Here, we demonstrate that ATM-centered DNA damage response (DDR) progressively declines with senescence and age, while low dose of chloroquine (CQ) activates ATM, promotes DNA damage clearance, rescues age-related metabolic shift, and prolongs replicative lifespan. Molecularly, ATM phosphorylates SIRT6 deacetylase and thus prevents MDM2-mediated ubiquitination and proteasomal degradation. Extra copies of Sirt6 extend lifespan in Atm-/- mice, with restored metabolic homeostasis. Moreover, the treatment with CQ remarkably extends lifespan of Caenorhabditis elegans, but not the ATM-1 mutants. In a progeria mouse model with low DNA repair capacity, long-term administration of CQ ameliorates premature ageing features and extends lifespan. Thus, our data highlights a pro-longevity role of ATM, for the first time establishing direct causal links between robust DNA repair machinery and longevity, and providing therapeutic strategy for progeria and age-related metabolic diseases.

Data availability

Sequencing data have been deposited in GEO under accession code GSE109280

The following data sets were generated
    1. Qian M
    2. Liu B
    (2018) Boosting ATM Activity Promotes Longevity in Nematodes and Mice
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE109280).

Article and author information

Author details

  1. Minxian Qian

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zuojun Liu

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Linyuan Peng

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Xiaolong Tang

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4744-5846
  5. Fanbiao Meng

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Ying Ao

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Mingyan Zhou

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Ming Wang

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Xinyue Cao

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Baoming Qin

    South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Zimei Wang

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhongjun Zhou

    School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7092-8128
  13. Guangming Wang

    East Hospital, Tongji University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  14. Zhengliang Gao

    Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  15. Xu Jun

    East Hospital, Tongji University School of Medicine, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8565-1723
  16. Baohua Liu

    Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University Health Science Center, Shenzhen, China
    For correspondence
    ppliew@szu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1599-8059

Funding

National Natural Science Foundation of China (81422016)

  • Baohua Liu

Ministry of Science and Technology of the People's Republic of China (2017YFA0503900)

  • Baohua Liu

National Natural Science Foundation of China (81501206)

  • Minxian Qian

Natural Science Foundation of Guangdong Province (2014A030308011)

  • Baohua Liu

Natural Science Foundation of Guangdong Province (2015A030308007)

  • Baoming Qin

Shenzhen Science and Technology Innovation Commission (CXZZ20140903103747568)

  • Baohua Liu

National Natural Science Foundation of China (91439133)

  • Baohua Liu

National Natural Science Foundation of China (81571374)

  • Baohua Liu

Ministry of Science and Technology of the People's Republic of China (2016YFC0904600)

  • Baohua Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were housed and handled in the laboratory animal research center of Shenzhen University. All experiments were performed in accordance with the guidelines of the Institutional Animal Care and Use Committee (IACUC). The protocols were approved by the Animal Welfare and Research Ethics Committee of Shenzhen University (Approval ID: 201412023).

Copyright

© 2018, Qian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,377
    views
  • 804
    downloads
  • 62
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Minxian Qian
  2. Zuojun Liu
  3. Linyuan Peng
  4. Xiaolong Tang
  5. Fanbiao Meng
  6. Ying Ao
  7. Mingyan Zhou
  8. Ming Wang
  9. Xinyue Cao
  10. Baoming Qin
  11. Zimei Wang
  12. Zhongjun Zhou
  13. Guangming Wang
  14. Zhengliang Gao
  15. Xu Jun
  16. Baohua Liu
(2018)
Boosting ATM activity alleviates ageing and extends lifespan in a mouse model of progeria
eLife 7:e34836.
https://doi.org/10.7554/eLife.34836

Share this article

https://doi.org/10.7554/eLife.34836

Further reading

    1. Biochemistry and Chemical Biology
    Meina He, Yongxin Tao ... Wenli Chen
    Research Article

    Copper is an essential enzyme cofactor in bacteria, but excess copper is highly toxic. Bacteria can cope with copper stress by increasing copper resistance and initiating chemorepellent response. However, it remains unclear how bacteria coordinate chemotaxis and resistance to copper. By screening proteins that interacted with the chemotaxis kinase CheA, we identified a copper-binding repressor CsoR that interacted with CheA in Pseudomonas putida. CsoR interacted with the HPT (P1), Dimer (P3), and HATPase_c (P4) domains of CheA and inhibited CheA autophosphorylation, resulting in decreased chemotaxis. The copper-binding of CsoR weakened its interaction with CheA, which relieved the inhibition of chemotaxis by CsoR. In addition, CsoR bound to the promoter of copper-resistance genes to inhibit gene expression, and copper-binding released CsoR from the promoter, leading to increased gene expression and copper resistance. P. putida cells exhibited a chemorepellent response to copper in a CheA-dependent manner, and CsoR inhibited the chemorepellent response to copper. Besides, the CheA-CsoR interaction also existed in proteins from several other bacterial species. Our results revealed a mechanism by which bacteria coordinately regulated chemotaxis and resistance to copper by CsoR.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Jiale Zhou, Ding Zhao ... Zhanjun Li
    Research Article

    5-Methylcytosine (m5C) is one of the posttranscriptional modifications in mRNA and is involved in the pathogenesis of various diseases. However, the capacity of existing assays for accurately and comprehensively transcriptome-wide m5C mapping still needs improvement. Here, we develop a detection method named DRAM (deaminase and reader protein assisted RNA methylation analysis), in which deaminases (APOBEC1 and TadA-8e) are fused with m5C reader proteins (ALYREF and YBX1) to identify the m5C sites through deamination events neighboring the methylation sites. This antibody-free and bisulfite-free approach provides transcriptome-wide editing regions which are highly overlapped with the publicly available bisulfite-sequencing (BS-seq) datasets and allows for a more stable and comprehensive identification of the m5C loci. In addition, DRAM system even supports ultralow input RNA (10 ng). We anticipate that the DRAM system could pave the way for uncovering further biological functions of m5C modifications.