Boosting ATM activity alleviates ageing and extends lifespan in a mouse model of progeria
Abstract
DNA damage accumulates with age (Lombard et al., 2005). However, whether and how robust DNA repair machinery promotes longevity is elusive. Here, we demonstrate that ATM-centered DNA damage response (DDR) progressively declines with senescence and age, while low dose of chloroquine (CQ) activates ATM, promotes DNA damage clearance, rescues age-related metabolic shift, and prolongs replicative lifespan. Molecularly, ATM phosphorylates SIRT6 deacetylase and thus prevents MDM2-mediated ubiquitination and proteasomal degradation. Extra copies of Sirt6 extend lifespan in Atm-/- mice, with restored metabolic homeostasis. Moreover, the treatment with CQ remarkably extends lifespan of Caenorhabditis elegans, but not the ATM-1 mutants. In a progeria mouse model with low DNA repair capacity, long-term administration of CQ ameliorates premature ageing features and extends lifespan. Thus, our data highlights a pro-longevity role of ATM, for the first time establishing direct causal links between robust DNA repair machinery and longevity, and providing therapeutic strategy for progeria and age-related metabolic diseases.
Data availability
Sequencing data have been deposited in GEO under accession code GSE109280
-
Boosting ATM Activity Promotes Longevity in Nematodes and MicePublicly available at the NCBI Gene Expression Omnibus (accession no: GSE109280).
Article and author information
Author details
Funding
National Natural Science Foundation of China (81422016)
- Baohua Liu
Ministry of Science and Technology of the People's Republic of China (2017YFA0503900)
- Baohua Liu
National Natural Science Foundation of China (81501206)
- Minxian Qian
Natural Science Foundation of Guangdong Province (2014A030308011)
- Baohua Liu
Natural Science Foundation of Guangdong Province (2015A030308007)
- Baoming Qin
Shenzhen Science and Technology Innovation Commission (CXZZ20140903103747568)
- Baohua Liu
National Natural Science Foundation of China (91439133)
- Baohua Liu
National Natural Science Foundation of China (81571374)
- Baohua Liu
Ministry of Science and Technology of the People's Republic of China (2016YFC0904600)
- Baohua Liu
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Mice were housed and handled in the laboratory animal research center of Shenzhen University. All experiments were performed in accordance with the guidelines of the Institutional Animal Care and Use Committee (IACUC). The protocols were approved by the Animal Welfare and Research Ethics Committee of Shenzhen University (Approval ID: 201412023).
Reviewing Editor
- Matt Kaeberlein, University of Washington, United States
Publication history
- Received: January 5, 2018
- Accepted: April 16, 2018
- Accepted Manuscript published: May 2, 2018 (version 1)
- Version of Record published: May 17, 2018 (version 2)
Copyright
© 2018, Qian et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,252
- Page views
-
- 705
- Downloads
-
- 37
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
Chain-length specific subsets of diacylglycerol (DAG) lipids are proposed to regulate differential physiological responses ranging from signal transduction to modulation of the membrane properties. However, the mechanism or molecular players regulating the subsets of DAG species remains unknown. Here, we uncover the role of a conserved eukaryotic protein family, DISCO-interacting protein 2 (DIP2) as a homeostatic regulator of a chemically distinct subset of DAGs using yeast, fly and mouse models. Genetic and chemical screens along with lipidomics analysis in yeast reveal that DIP2 prevents the toxic accumulation of specific DAGs in the logarithmic growth phase, which otherwise leads to endoplasmic reticulum stress. We also show that the fatty acyl-AMP ligase-like domains of DIP2 are essential for the redirection of the flux of DAG subspecies to storage lipid, triacylglycerols. DIP2 is associated with vacuoles through mitochondria-vacuole contact sites and such modulation of selective DAG abundance by DIP2 is found to be crucial for optimal vacuole membrane fusion and consequently osmoadaptation in yeast. Thus, the study illuminates an unprecedented DAG metabolism route and provides new insights on how cell fine-tunes DAG subspecies for cellular homeostasis and environmental adaptation.
-
- Biochemistry and Chemical Biology
- Microbiology and Infectious Disease
Members of the bacterial T6SS amidase effector (Tae) superfamily of toxins are delivered between competing bacteria to degrade cell wall peptidoglycan. Although Taes share a common substrate, they exhibit distinct antimicrobial potency across different competitor species. To investigate the molecular basis governing these differences, we quantitatively defined the functional determinants of Tae1 from Pseudomonas aeruginosa PAO1 using a combination of nuclear magnetic resonance (NMR) and a high-throughput in vivo genetic approach called deep mutational scanning (DMS). As expected, combined analyses confirmed the role of critical residues near the Tae1 catalytic center. Unexpectedly, DMS revealed substantial contributions to enzymatic activity from a much larger, ring-like functional hot spot extending around the entire circumference of the enzyme. Comparative DMS across distinct growth conditions highlighted how functional contribution of different surfaces is highly context-dependent, varying alongside composition of targeted cell walls. These observations suggest that Tae1 engages with the intact cell wall network through a more distributed three-dimensional interaction interface than previously appreciated, providing an explanation for observed differences in antimicrobial potency across divergent Gram-negative competitors. Further binding studies of several Tae1 variants with their cognate immunity protein demonstrate that requirements to maintain protection from Tae activity may be a significant constraint on the mutational landscape of tae1 toxicity in the wild. In total, our work reveals that Tae diversification has likely been shaped by multiple independent pressures to maintain interactions with binding partners that vary across bacterial species and conditions.