Mechano-redox control of integrin de-adhesion

  1. Freda Passam
  2. Joyce Chiu
  3. Lining Ju
  4. Aster Pijning
  5. Zeenat Jahan
  6. Ronit Mor-Cohen
  7. Adva Yeheskel
  8. Katra Kolšek
  9. Lena Thärichen
  10. Camilo Aponte-Santamaría
  11. Frauke Gräter
  12. Philip J Hogg  Is a corresponding author
  1. University of New South Wales, Australia
  2. University of Sydney, Australia
  3. Tel Aviv University, Israel
  4. Heidelberg Institute of Theoretical Studies, Germany
  5. University of Los Andes, Colombia

Abstract

How proteins harness mechanical force to control function is a significant biological question. Here we describe a human cell surface receptor that couples ligand binding and force to trigger a chemical event which controls the adhesive properties of the receptor. Our studies of the secreted platelet oxidoreductase, ERp5, have revealed that it mediates release of fibrinogen from activated platelet αIIbβ3 integrin. Protein chemical studies show that ligand binding to extended αIIbβ3 integrin renders the βI-domain Cys177-Cys184 disulfide bond cleavable by ERp5. Fluid shear and force spectroscopy assays indicate that disulfide cleavage is enhanced by mechanical force. Cell adhesion assays and molecular dynamics simulations demonstrate that cleavage of the disulfide induces long-range allosteric effects within the βI-domain, mainly affecting the metal-binding sites, that results in release of fibrinogen. This coupling of ligand binding, force and redox events to control cell adhesion may be employed to regulate other protein-protein interactions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Freda Passam

    St George Clinical School, University of New South Wales, Kogarah, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Joyce Chiu

    Centenary Institute, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Lining Ju

    Heart Research Institute, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Aster Pijning

    Centenary Institute, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Zeenat Jahan

    St George Clinical School, University of New South Wales, Kogarah, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Ronit Mor-Cohen

    Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Adva Yeheskel

    George S Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Katra Kolšek

    Heidelberg Institute of Theoretical Studies, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Lena Thärichen

    Heidelberg Institute of Theoretical Studies, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Camilo Aponte-Santamaría

    Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8427-6965
  11. Frauke Gräter

    Heidelberg Institute of Theoretical Studies, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Philip J Hogg

    Centenary Institute, University of Sydney, Sydney, Australia
    For correspondence
    phil.hogg@sydney.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6486-2863

Funding

National Health and Medical Research Council (Research Fellowship 1110219)

  • Philip J Hogg

Deutsche Forschungsgemeinschaft (Research Unit FOR 1543)

  • Katra Kolšek
  • Camilo Aponte-Santamaría
  • Frauke Gräter

National Heart Foundation of Australia (Australia Postdoctoral Fellowship 101285)

  • Lining Ju

Klaus Tschira Stiftung

  • Frauke Gräter

Diabetes Australia Research Trust (Grant G179720)

  • Lining Ju

Royal College of Pathologists of Australasia (Kanematsu/Novo Nordisk Research Award)

  • Freda Passam
  • Lining Ju

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All procedures involving collection of human blood from healthy volunteers were in accordance with the St George Hospital Human Ethics Committee (HREC 12/252), Human Research Ethics Committee (HREC) (Project number 2014/244) of the University of Sydney , and the Helsinki Declaration of 1983.

Copyright

© 2018, Passam et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,459
    views
  • 473
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Freda Passam
  2. Joyce Chiu
  3. Lining Ju
  4. Aster Pijning
  5. Zeenat Jahan
  6. Ronit Mor-Cohen
  7. Adva Yeheskel
  8. Katra Kolšek
  9. Lena Thärichen
  10. Camilo Aponte-Santamaría
  11. Frauke Gräter
  12. Philip J Hogg
(2018)
Mechano-redox control of integrin de-adhesion
eLife 7:e34843.
https://doi.org/10.7554/eLife.34843

Share this article

https://doi.org/10.7554/eLife.34843

Further reading

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.