Shearing in flow environment promotes evolution of social behavior in microbial populations

  1. Gurdip Uppal  Is a corresponding author
  2. Dervis Vural  Is a corresponding author
  1. University of Notre Dame, United States

Abstract

How producers of public goods persist in microbial communities is a major question in evolutionary biology. Cooperation is evolutionarily unstable, since cheating strains can reproduce quicker and take over. Spatial structure has been shown to be a robust mechanism for the evolution of cooperation. Here we study how spatial assortment might emerge from native dynamics and show that fluid flow shear promotes cooperative behavior. Social structures arise naturally from our advection-diffusion-reaction model as self-reproducing Turing patterns. We computationally study the effects of fluid advection on these patterns as a mechanism to enable or enhance social behavior. Our central finding is that flow shear enables and promotes social behavior in microbes by increasing the group fragmentation rate and thereby limiting the spread of cheating strains. Regions of the flow domain with higher shear admit high cooperativity and large population density, whereas low shear regions are devoid of life due to opportunistic mutations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Gurdip Uppal

    Department of Physics, University of Notre Dame, Notre Dame, United States
    For correspondence
    guppal@nd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3957-256X
  2. Dervis Vural

    Department of Physics, University of Notre Dame, Notre Dame, United States
    For correspondence
    dvural@nd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0495-8086

Funding

Defense Advanced Research Projects Agency (Contract No. HR0011-16-C0062)

  • Dervis Vural

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Uppal & Vural

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,210
    views
  • 333
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gurdip Uppal
  2. Dervis Vural
(2018)
Shearing in flow environment promotes evolution of social behavior in microbial populations
eLife 7:e34862.
https://doi.org/10.7554/eLife.34862

Share this article

https://doi.org/10.7554/eLife.34862