Gene-specific mechanisms direct Glucocorticoid Receptor-driven repression of inflammatory response genes in macrophages

  1. Maria A Sacta
  2. Bowranigan Tharmalingam
  3. Maddalena Coppo
  4. David A Rollins
  5. Dinesh K Deochand
  6. Bradley Benjamin
  7. Li Yu
  8. Bin Zhang
  9. Xiaoyu Hu
  10. Rong Li
  11. Yurii Chinenov
  12. Inez Rogatsky  Is a corresponding author
  1. Hospital for Special Surgery, United States
  2. Hospital For Special Surgery, United States
  3. Tsinghua University, China
  4. The University of Texas Health Science Center at San Antonio, United States

Abstract

The Glucocorticoid Receptor (GR) potently represses macrophage-elicited inflammation, however, the underlying mechanisms remain obscure. Our genome-wide analysis in mouse macrophages reveals that pro-inflammatory paused genes, activated via global negative elongation factor (NELF) dissociation and RNA Polymerase (Pol)2 release from early elongation arrest, and non-paused genes, induced by de novo Pol2 recruitment, are equally susceptible to acute glucocorticoid repression. Moreover, in both cases the dominant mechanism involves rapid GR tethering to p65 at NF-kB binding sites. Yet, specifically at paused genes, GR activation triggers widespread promoter accumulation of NELF, with myeloid cell-specific NELF deletion conferring glucocorticoid resistance. Conversely, at non-paused genes, GR attenuates the recruitment of p300 and histone acetylation, leading to a failure to assemble BRD4 and Mediator at promoters and enhancers, ultimately blocking Pol2 initiation. Thus, GR displays no preference for a specific pro-inflammatory gene class, however, it effects repression by targeting distinct temporal events and components of transcriptional machinery.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Maria A Sacta

    Research Institute, Hospital for Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bowranigan Tharmalingam

    Research Institute, Hospital for Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maddalena Coppo

    Research Institute, Hospital for Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. David A Rollins

    Research Institute, Hospital For Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dinesh K Deochand

    Research Institute, Hospital for Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bradley Benjamin

    Research Institute, Hospital for Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Li Yu

    Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Bin Zhang

    Institute for Immunology, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6232-6768
  9. Xiaoyu Hu

    Research InstituteInstitute for Immunology, Hospital for Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Rong Li

    Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6471-6580
  11. Yurii Chinenov

    Research Institute, Hospital for Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Inez Rogatsky

    Research Institute, Hospital for Special Surgery, New York, United States
    For correspondence
    rogatskyi@hss.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3514-5077

Funding

National Institutes of Health (R01DK099087)

  • Maria A Sacta
  • Bowranigan Tharmalingam
  • Maddalena Coppo
  • David A Rollins
  • Dinesh K Deochand
  • Bradley Benjamin
  • Yurii Chinenov
  • Inez Rogatsky

National Natural Science Foundation of China (91642115)

  • Li Yu
  • Bin Zhang
  • Xiaoyu Hu

National Natural Science Foundation of China (8151101184)

  • Li Yu
  • Bin Zhang
  • Xiaoyu Hu

U.S. Department of Defense (PR130049)

  • Bowranigan Tharmalingam
  • Maddalena Coppo
  • Yurii Chinenov
  • Inez Rogatsky

Rheumatology Research Foundation

  • David A Rollins
  • Yurii Chinenov
  • Inez Rogatsky

Hospital for Special Surgery David Rosensweig Genomic Center

  • Maddalena Coppo
  • Yurii Chinenov
  • Inez Rogatsky

Ministry of Science and Technology of the People's Republic of China

  • Li Yu
  • Bin Zhang
  • Xiaoyu Hu

National Natural Science Foundation of China (81422019)

  • Li Yu
  • Bin Zhang
  • Xiaoyu Hu

Tsinghua University

  • Li Yu
  • Bin Zhang
  • Xiaoyu Hu

National Institutes of Health (R01 CA220578)

  • Rong Li

National Natural Science Foundation of China (81571580)

  • Li Yu
  • Bin Zhang
  • Xiaoyu Hu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peter Tontonoz, University of California, Los Angeles, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Mice were maintained in the Weill Cornell Animal Facility in compliance with guidelines from the Weill Cornell Animal Care and Use Committee (Protocol approval # 2015-0050).

Version history

  1. Received: January 7, 2018
  2. Accepted: January 28, 2018
  3. Accepted Manuscript published: February 9, 2018 (version 1)
  4. Version of Record published: February 21, 2018 (version 2)

Copyright

© 2018, Sacta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,491
    views
  • 554
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria A Sacta
  2. Bowranigan Tharmalingam
  3. Maddalena Coppo
  4. David A Rollins
  5. Dinesh K Deochand
  6. Bradley Benjamin
  7. Li Yu
  8. Bin Zhang
  9. Xiaoyu Hu
  10. Rong Li
  11. Yurii Chinenov
  12. Inez Rogatsky
(2018)
Gene-specific mechanisms direct Glucocorticoid Receptor-driven repression of inflammatory response genes in macrophages
eLife 7:e34864.
https://doi.org/10.7554/eLife.34864

Share this article

https://doi.org/10.7554/eLife.34864

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.