Gene-specific mechanisms direct Glucocorticoid Receptor-driven repression of inflammatory response genes in macrophages

  1. Maria A Sacta
  2. Bowranigan Tharmalingam
  3. Maddalena Coppo
  4. David A Rollins
  5. Dinesh K Deochand
  6. Bradley Benjamin
  7. Li Yu
  8. Bin Zhang
  9. Xiaoyu Hu
  10. Rong Li
  11. Yurii Chinenov
  12. Inez Rogatsky  Is a corresponding author
  1. Hospital for Special Surgery, United States
  2. Hospital For Special Surgery, United States
  3. Tsinghua University, China
  4. The University of Texas Health Science Center at San Antonio, United States

Abstract

The Glucocorticoid Receptor (GR) potently represses macrophage-elicited inflammation, however, the underlying mechanisms remain obscure. Our genome-wide analysis in mouse macrophages reveals that pro-inflammatory paused genes, activated via global negative elongation factor (NELF) dissociation and RNA Polymerase (Pol)2 release from early elongation arrest, and non-paused genes, induced by de novo Pol2 recruitment, are equally susceptible to acute glucocorticoid repression. Moreover, in both cases the dominant mechanism involves rapid GR tethering to p65 at NF-kB binding sites. Yet, specifically at paused genes, GR activation triggers widespread promoter accumulation of NELF, with myeloid cell-specific NELF deletion conferring glucocorticoid resistance. Conversely, at non-paused genes, GR attenuates the recruitment of p300 and histone acetylation, leading to a failure to assemble BRD4 and Mediator at promoters and enhancers, ultimately blocking Pol2 initiation. Thus, GR displays no preference for a specific pro-inflammatory gene class, however, it effects repression by targeting distinct temporal events and components of transcriptional machinery.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Maria A Sacta

    Research Institute, Hospital for Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Bowranigan Tharmalingam

    Research Institute, Hospital for Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maddalena Coppo

    Research Institute, Hospital for Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. David A Rollins

    Research Institute, Hospital For Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dinesh K Deochand

    Research Institute, Hospital for Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Bradley Benjamin

    Research Institute, Hospital for Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Li Yu

    Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Bin Zhang

    Institute for Immunology, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6232-6768
  9. Xiaoyu Hu

    Research InstituteInstitute for Immunology, Hospital for Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Rong Li

    Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6471-6580
  11. Yurii Chinenov

    Research Institute, Hospital for Special Surgery, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Inez Rogatsky

    Research Institute, Hospital for Special Surgery, New York, United States
    For correspondence
    rogatskyi@hss.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3514-5077

Funding

National Institutes of Health (R01DK099087)

  • Maria A Sacta
  • Bowranigan Tharmalingam
  • Maddalena Coppo
  • David A Rollins
  • Dinesh K Deochand
  • Bradley Benjamin
  • Yurii Chinenov
  • Inez Rogatsky

National Natural Science Foundation of China (91642115)

  • Li Yu
  • Bin Zhang
  • Xiaoyu Hu

National Natural Science Foundation of China (8151101184)

  • Li Yu
  • Bin Zhang
  • Xiaoyu Hu

U.S. Department of Defense (PR130049)

  • Bowranigan Tharmalingam
  • Maddalena Coppo
  • Yurii Chinenov
  • Inez Rogatsky

Rheumatology Research Foundation

  • David A Rollins
  • Yurii Chinenov
  • Inez Rogatsky

Hospital for Special Surgery David Rosensweig Genomic Center

  • Maddalena Coppo
  • Yurii Chinenov
  • Inez Rogatsky

Ministry of Science and Technology of the People's Republic of China

  • Li Yu
  • Bin Zhang
  • Xiaoyu Hu

National Natural Science Foundation of China (81422019)

  • Li Yu
  • Bin Zhang
  • Xiaoyu Hu

Tsinghua University

  • Li Yu
  • Bin Zhang
  • Xiaoyu Hu

National Institutes of Health (R01 CA220578)

  • Rong Li

National Natural Science Foundation of China (81571580)

  • Li Yu
  • Bin Zhang
  • Xiaoyu Hu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Mice were maintained in the Weill Cornell Animal Facility in compliance with guidelines from the Weill Cornell Animal Care and Use Committee (Protocol approval # 2015-0050).

Copyright

© 2018, Sacta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,672
    views
  • 570
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria A Sacta
  2. Bowranigan Tharmalingam
  3. Maddalena Coppo
  4. David A Rollins
  5. Dinesh K Deochand
  6. Bradley Benjamin
  7. Li Yu
  8. Bin Zhang
  9. Xiaoyu Hu
  10. Rong Li
  11. Yurii Chinenov
  12. Inez Rogatsky
(2018)
Gene-specific mechanisms direct Glucocorticoid Receptor-driven repression of inflammatory response genes in macrophages
eLife 7:e34864.
https://doi.org/10.7554/eLife.34864

Share this article

https://doi.org/10.7554/eLife.34864

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

    1. Chromosomes and Gene Expression
    Ashwin Govindan, Nicholas K Conrad
    Research Article

    O-GlcNAcylation is the reversible post-translational addition of β-N-acetylglucosamine to serine and threonine residues of nuclear and cytoplasmic proteins. It plays an important role in several cellular processes through the modification of thousands of protein substrates. O-GlcNAcylation in humans is mediated by a single essential enzyme, O-GlcNAc transferase (OGT). OGT, together with the sole O-GlcNAcase OGA, form an intricate feedback loop to maintain O-GlcNAc homeostasis in response to changes in cellular O-GlcNAc using a dynamic mechanism involving nuclear retention of its fourth intron. However, the molecular mechanism of this dynamic regulation remains unclear. Using an O-GlcNAc responsive GFP reporter cell line, we identify SFSWAP, a poorly characterized splicing factor, as a trans-acting factor regulating OGT intron detention. We show that SFSWAP is a global regulator of retained intron splicing and exon skipping that primarily acts as a negative regulator of splicing. In contrast, knockdown of SFSWAP leads to reduced inclusion of a ‘decoy exon’ present in the OGT retained intron which may mediate its role in OGT intron detention. Global analysis of decoy exon inclusion in SFSWAP and UPF1 double knockdown cells indicate altered patterns of decoy exon usage. Together, these data indicate a role for SFSWAP as a global negative regulator of pre-mRNA splicing and positive regulator of intron retention.