Embryonic hematopoiesis modulates the inflammatory response and larval hematopoiesis in Drosophila

  1. Wael Bazzi
  2. Pierre B Cattenoz
  3. Claude Delaporte
  4. Vasanthi Dasari
  5. Rosy Sakr
  6. Yoshihiro Yuasa
  7. Angela Giangrande  Is a corresponding author
  1. Institut de Génétique et de Biologie Moléculaire et Cellulaire, France
  2. Centre National de la Recherche Scientifique, France
  3. Institut National de la Santé et de la Recherche Médicale, France
  4. Université de Strasbourg, France
15 figures, 1 table and 2 additional files

Figures

Figure 1 with 4 supplements
Gcm hinders Jak/Stat-mediated melanotic tumor formation.

(a) Third instar larvae of the indicated genotypes (Note that all the detailed genotypes are in the Supplementary Methods, Fly strains and genetics section). White arrowheads indicate the melanotic …

https://doi.org/10.7554/eLife.34890.002
Figure 1—figure supplement 1
Gcm is not expressed in the second hematopoietic wave.

Control lineage tracing in the lymph gland of Wandering L3 using the lymph gland specific Dot> gtrace line (Kimbrell et al., 2002) (a,a’). Lineage tracing in Wandering L3 using gcmgtrace (b,b’) and h…

https://doi.org/10.7554/eLife.34890.003
Figure 1—figure supplement 2
Crystal cell phenotype in gcm26 embryos.

(a–b’) Immunolabelling of gcm26/CyOactinGFP (a,a’) and gcm26 homozygous embryos (b,b’) (DAPI in blue, GFP in green, PPO1 crystal cell marker in red). (a,b) show merge of the three channels and (a’,b’

https://doi.org/10.7554/eLife.34890.004
Figure 1—figure supplement 3
Crystal cell phenotype in gcm KD larvae.

(a) gcm RNAi efficiency in S2 cells detected by GFP intensity in gcm GOF + gcm KD transfected S2 cells as compared to controls (n = 9). GFP signal measured upon transfection with pPac-gal4, pUAS-gcm

https://doi.org/10.7554/eLife.34890.005
Figure 1—figure supplement 4
Gcm inhibits Jak/Stat-mediated melanotic tumor formation.

(a–c) Immunolabelling of hemocytes from Wandering L3 of the mentioned genotypes (DAPI in blue, Phalloidin in green, Srp in red, lamellocyte marker L4 in white), (n > 3). Strong Phalloidin labelling …

https://doi.org/10.7554/eLife.34890.006
Gcm induces the expression of Jak/Stat inhibitors and hinders Jak/Stat-mediated melanotic tumor formation.

(a–c) Immunolabelling of S2 cells transfected with pPac-gal4 and pUAS-RFP (Control, (a), or pPac-gal4, pUAS-RFP and pUAS- hopTum-l (hopTum-l GOF, (b), or pPac-gal4, pUAS-RFP, pUAS- hopTum-l and pPac-…

https://doi.org/10.7554/eLife.34890.008
Embryonic hemocytes signal to the lymph gland.

(a) Embryonic hemocytes (red) in early and late embryos as well as in a third instar larva. The lymph gland (blue) histolyzes at the larva to pupa transition. (b) Number and percentage of lymph …

https://doi.org/10.7554/eLife.34890.009
Figure 4 with 1 supplement
Embryonic hemocytes signal through Upd2 and Upd3.

(a) Lymph gland phenotypes. (b,c) Lymph gland immunolabelling as in Figure 3c–f. (d) Tumor penetrance. (e–f) Relative expression levels of upd2 and upd3 in hemocytes from wandering L3 larvae of the …

https://doi.org/10.7554/eLife.34890.010
Figure 4—figure supplement 1
Interaction between Jak/Stat pathway, Gcm and Upd2/Upd3 cytokines.

(a) Tumor penetrance in double heterozygous female larvae hopTum-l/upd2Δ and hopTum-l/upd3Δ. (b,b’) upd2 and upd3 expression levels in hemocytes sorted from stage 16 control embryos (srp(hemo)Gal4/UA…

https://doi.org/10.7554/eLife.34890.011
Figure 5 with 1 supplement
Inflammatory response upon systemic and conditional Jak/Stat activation.

(a) Tumor penetrance, phenotype expressivity assessed as number of tumors/larva and tumor size of control animals (gcm> ), systemic hopTum-l, conditional hopTum-l (gcm> UAS-hopTum-l) and conditional …

https://doi.org/10.7554/eLife.34890.012
Figure 5—figure supplement 1
Phenotypes induced by conditional activation of the Jak/Stat pathway in the embryonic hemocytes.

(a) Tumor penetrance in conditional hopTum-l animals (UAS-hopTum-l) using srp(hemo)> , sn> , gcm> and gcm(hemo)> drivers as compared to hopTum-l/+ (n > 50). (b) Tumor expressivity assessed as tumor …

https://doi.org/10.7554/eLife.34890.013
Jak/Stat activation in the embryonic hemocytes activates the Jak/Stat pathway in Wandering L3 muscles.

(a–c) Muscle immunolabelling in Wandering larvae of the indicated genotypes. The Phalloidin labelling (in green) highlights the striated muscle fibers rich in actin filament, Stat92E is in red and …

https://doi.org/10.7554/eLife.34890.014
The inflammatory response upon wasp infestation is exacerbated in gcm KD animals.

(a) Histogram representing the percentage of total, partial and no wasp egg encapsulation (n > 30). (b) Lethality of the parasitic wasp after infestation of Drosophila larvae (n = 4) (> 200 animals).

https://doi.org/10.7554/eLife.34890.015
Figure 8 with 1 supplement
Gcm impacts the development and the inflammatory response of hemocytes.

Relative expression levels of plasmatocyte and lamellocyte markers, Jak/Stat inhibitor and cytokines in hemocytes from stage 16 mutant embryos (srp(hemo)> RFP,gcm [Cattenoz et al., 2016]) or from …

https://doi.org/10.7554/eLife.34890.016
Figure 8—figure supplement 1
Gcm is not induced in circulating hemocytes nor in lymph glands of 3rd instar larvae upon wasp infestation.

Immunolabelling of hemocytes from third instar larvae gcm> GFP without (a) or after wasp infestation (b). (DAPI in blue, GFP in green and Phalloidin in gray). (c) Immunolabelling of the lymph gland …

https://doi.org/10.7554/eLife.34890.017
Impact of the wasp infestation on the hemocytes.

(a) Schematic of the correspondence between the timeline after egg laying (AEL) and the larval developmental stage. The wasp infestation was carried out at the L2 stage. (b–c) RFP signals from HmlΔRF…

https://doi.org/10.7554/eLife.34890.018
Wasp infestation recruits first the embryonic hemocytes and then the LG hemocytes.

Timeline summarizing the sequence of events occurring in the immune system of the larva in normal conditions (top panel) and upon wasp infestation (lower panel). In normal conditions, only embryonic …

https://doi.org/10.7554/eLife.34890.019
Schematic model on the molecular cascade leading to tumor formation upon Jak/Stat activation in the embryonic hemocytes.

(a) gcm> hopTum-l activates the Jak/Stat pathway exclusively in the hemocytes at embryonic stage. This leads to the production of the Upd2/Upd3 pro-inflammatory cytokines in those cells and to the …

https://doi.org/10.7554/eLife.34890.020

Tables

Key resources table
DesignationSource or referenceIdentifiersAdditional information
Mouse anti-L4Pr. I. AndoMouse anti-L4(1/30)
Rabbit anti-PH3Upstate biotechnology #06–570Rabbit anti-PH3(1/1000)
Mouse anti-HemesePr. I. AndoMouse anti-Hemese(1/30)
Chicken anti-GFPabcam #13970Chicken anti-GFP(1/500)
Rabbit anti-SerpentTrebuchet, unpublishedRabbit anti-Serpent(1/1000)
Rabbit anti-Stat92EDr. D. MontellRabbit anti-Stat92E(1/100)
Rabbit anti-PPO1Dr. WJ. LeeRabbit anti-PPO1(1/100)
Rabbit anti-RFPabcam #62341Rabbit anti-RFP(1/500)
S2 cellsATCC Ref: CRL-1963S2 ATCC
Effectene
Transfection Reagent
QiagenEffectene Transfection
Reagent
WTBloomington #5905w1118
hopTum-lBloomington #8492hopTum-l/FM7cPoint mutation that
constitutively activates
the Jak/Stat pathway
HmlΔRFPMakhijani et al., 2011HmlΔRFP
UAS-hopTum-lHarrison et al., 1995





UAS-hopTum-l/CyO,
twilacZ
Reporter line for hop
Tum-l over-expression
Gcm> GFPSoustelle and Giangrande, 2007
gcmGal4,UAS-mCD8
GFP/CyO,Tb
Driver specific to embryonic
 hemocytes and glia, gcm
 hypomorphic mutation
Gcm KDBloomington #31519UAS-gcmRNAidsRNA reporter line
for gcm down-regulation
Gcm GOFBernardoni et al., 1997




UAS-gcmF18AReporter line for gcm
over-expression
Gcm26Vincent et al., 1996



gcm26/CyOactinGFPNull gcm mutation
Upd2ΔBloomington #55727upd2Δ4.7 kb deletion
Upd3ΔBloomington #55728upd3ΔImprecise excision
Upd2 KDBloomington #33988UAS-upd2RNAidsRNA reporter line
 for upd2 down-regulation
Upd3 KDBloomington #32859UAS-upd3RNAidsRNA reporter line
 for upd3 down-regulation
Upd2 GOFJiang et al., 2009UAS-upd2/CyOReporter line for upd2
 over-expression
Upd3 GOFJiang et al., 2009UAS-upd3/CyOReporter line for upd3
 over-expression
Ptp61F KDBloomington #32426UAS-Ptp61FRNAidsRNA reporter line for
Ptp61F down-regulation
Socs36E KDBloomington #35036UAS-Socs36ERNAidsRNA reporter line for
Socs36E down-regulation
Socs44A KDBloomington #42830UAS-Socs44ARNAidsRNA reporter line for
Socs44A down-regulation
Ptp61Fa GOFMüller et al., 2005




UAS-Ptp61Fa/CyOReporter line to over-express
the cytoplasmic splicing
isoform
Ptp61Fc GOFMüller et al., 2005

UAS-Ptp61Fc/TM3Reporter line to over-express
the nuclear splicing isoform
Gcm(hemo)> Cattenoz et al., 2016

gcmGal4,UAS-mCD8GFP,
repoGal80/CyO
gcm driver not expressed
 in glia, hypomorphic mutation
sn> Zanet et al., 2012

snGal4Singed driver, specific to
embryonic hemocytes
srp(hemo)> Brückner et al., 2004

srp(hemo)Gal4Serpent driver specific to
embryonic hemocytes
dot> Bloomington #67608DotGal4Dorothy driver specifically
expressed in embryonic and
larval lymph gland
lz> GFPBloomington #6314lzGal4,UAS-mCD8GFPLozenge driver expressed
in crystal cells
10xStat92E-GFPBloomington #2619810xStat92E-GFPReporter line for STAT activity,
10 Stat92E binding sites
driving GFP expression
GtraceBloomington #28282UAS-FLP;;Ubi-p63E
(FRT.STOP)Stinger
This line allows the analysis
of lineage-traced expression
 of Gal4 drivers
Ubi> Bloomington #32551UbiGal4Expresses GAL4 in all cells
RFPBloomington #30556UAS-RFPInserted on the second
chromosome
Gtrace-LacZBloomington #6355P{Act5C> polyA>
lacZ.nls1}3
FijiSchindelin et al., 2012

Fiji
pPac-gcmMiller et al., 1998


pPac-gcm
repoGFPLaneve et al., 2013

4.3 kb repo-GFP
pUAS-hopTum-lHarrison et al., 1995


pUAS-hopTum-l
pUAS-gcmRNAiVienna Drosophila
Resource Center
(VDRC) #dna1452
pUAS-gcmRNAi

Additional files

Supplementary file 1

details the materials and methods used in the manuscript

https://doi.org/10.7554/eLife.34890.021
Transparent reporting form
https://doi.org/10.7554/eLife.34890.022

Download links