Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates

  1. Guadalupe Sepulveda
  2. Mark Antkowiak
  3. Ingrid Brust-Mascher
  4. Karan Mahe
  5. Tingyoung Ou
  6. Noemi M Castro
  7. Lana N Christensen
  8. Lee Cheung
  9. Xueer Jiang
  10. Daniel Yoon
  11. Bo Huang
  12. Li-En Jao  Is a corresponding author
  1. University of California, Davis, United States
  2. University of California, San Francisco, United States

Abstract

As microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 2B, Figure 3C, Figure 3- figure supplement 2, Figure 4A, Figure 4D, Figure 4- figure supplement 2, Figure 4- figure supplement 3B, Figures 5A-5C, Figure 6, and Figure 6- figure supplement 1.

Article and author information

Author details

  1. Guadalupe Sepulveda

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mark Antkowiak

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ingrid Brust-Mascher

    Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Karan Mahe

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tingyoung Ou

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Noemi M Castro

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lana N Christensen

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lee Cheung

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Xueer Jiang

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel Yoon

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Bo Huang

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Li-En Jao

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    For correspondence
    ljao@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5925-883X

Funding

University of California, Davis (New Faculty Startup Funds)

  • Li-En Jao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yukiko M Yamashita, University of Michigan, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20169) of the University of California, Davis.

Version history

  1. Received: January 10, 2018
  2. Accepted: April 30, 2018
  3. Accepted Manuscript published: April 30, 2018 (version 1)
  4. Version of Record published: May 30, 2018 (version 2)

Copyright

© 2018, Sepulveda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,488
    views
  • 698
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guadalupe Sepulveda
  2. Mark Antkowiak
  3. Ingrid Brust-Mascher
  4. Karan Mahe
  5. Tingyoung Ou
  6. Noemi M Castro
  7. Lana N Christensen
  8. Lee Cheung
  9. Xueer Jiang
  10. Daniel Yoon
  11. Bo Huang
  12. Li-En Jao
(2018)
Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates
eLife 7:e34959.
https://doi.org/10.7554/eLife.34959

Share this article

https://doi.org/10.7554/eLife.34959

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.