1. Cell Biology
Download icon

Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates

  1. Guadalupe Sepulveda
  2. Mark Antkowiak
  3. Ingrid Brust-Mascher
  4. Karan Mahe
  5. Tingyoung Ou
  6. Noemi M Castro
  7. Lana N Christensen
  8. Lee Cheung
  9. Xueer Jiang
  10. Daniel Yoon
  11. Bo Huang
  12. Li-En Jao  Is a corresponding author
  1. University of California, Davis, United States
  2. University of California, San Francisco, United States
Research Article
  • Cited 23
  • Views 4,997
  • Annotations
Cite this article as: eLife 2018;7:e34959 doi: 10.7554/eLife.34959
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

As microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 2B, Figure 3C, Figure 3- figure supplement 2, Figure 4A, Figure 4D, Figure 4- figure supplement 2, Figure 4- figure supplement 3B, Figures 5A-5C, Figure 6, and Figure 6- figure supplement 1.

Article and author information

Author details

  1. Guadalupe Sepulveda

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mark Antkowiak

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ingrid Brust-Mascher

    Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Karan Mahe

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tingyoung Ou

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Noemi M Castro

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lana N Christensen

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lee Cheung

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Xueer Jiang

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel Yoon

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Bo Huang

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Li-En Jao

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    For correspondence
    ljao@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5925-883X

Funding

University of California, Davis (New Faculty Startup Funds)

  • Li-En Jao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20169) of the University of California, Davis.

Reviewing Editor

  1. Yukiko M Yamashita, University of Michigan, United States

Publication history

  1. Received: January 10, 2018
  2. Accepted: April 30, 2018
  3. Accepted Manuscript published: April 30, 2018 (version 1)
  4. Version of Record published: May 30, 2018 (version 2)

Copyright

© 2018, Sepulveda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,997
    Page views
  • 525
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    David W Sanders et al.
    Research Article Updated

    Many enveloped viruses induce multinucleated cells (syncytia), reflective of membrane fusion events caused by the same machinery that underlies viral entry. These syncytia are thought to facilitate replication and evasion of the host immune response. Here, we report that co-culture of human cells expressing the receptor ACE2 with cells expressing SARS-CoV-2 spike, results in synapse-like intercellular contacts that initiate cell-cell fusion, producing syncytia resembling those we identify in lungs of COVID-19 patients. To assess the mechanism of spike/ACE2-driven membrane fusion, we developed a microscopy-based, cell-cell fusion assay to screen ~6000 drugs and >30 spike variants. Together with quantitative cell biology approaches, the screen reveals an essential role for biophysical aspects of the membrane, particularly cholesterol-rich regions, in spike-mediated fusion, which extends to replication-competent SARS-CoV-2 isolates. Our findings potentially provide a molecular basis for positive outcomes reported in COVID-19 patients taking statins and suggest new strategies for therapeutics targeting the membrane of SARS-CoV-2 and other fusogenic viruses.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Asha Mary Joseph et al.
    Research Article Updated

    Translesion synthesis (TLS) is a highly conserved mutagenic DNA lesion tolerance pathway, which employs specialized, low-fidelity DNA polymerases to synthesize across lesions. Current models suggest that activity of these polymerases is predominantly associated with ongoing replication, functioning either at or behind the replication fork. Here we provide evidence for DNA damage-dependent function of a specialized polymerase, DnaE2, in replication-independent conditions. We develop an assay to follow lesion repair in non-replicating Caulobacter and observe that components of the replication machinery localize on DNA in response to damage. These localizations persist in the absence of DnaE2 or if catalytic activity of this polymerase is mutated. Single-stranded DNA gaps for SSB binding and low-fidelity polymerase-mediated synthesis are generated by nucleotide excision repair (NER), as replisome components fail to localize in the absence of NER. This mechanism of gap-filling facilitates cell cycle restoration when cells are released into replication-permissive conditions. Thus, such cross-talk (between activity of NER and specialized polymerases in subsequent gap-filling) helps preserve genome integrity and enhances survival in a replication-independent manner.