Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates

  1. Guadalupe Sepulveda
  2. Mark Antkowiak
  3. Ingrid Brust-Mascher
  4. Karan Mahe
  5. Tingyoung Ou
  6. Noemi M Castro
  7. Lana N Christensen
  8. Lee Cheung
  9. Xueer Jiang
  10. Daniel Yoon
  11. Bo Huang
  12. Li-En Jao  Is a corresponding author
  1. University of California, Davis, United States
  2. University of California, San Francisco, United States

Abstract

As microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 2B, Figure 3C, Figure 3- figure supplement 2, Figure 4A, Figure 4D, Figure 4- figure supplement 2, Figure 4- figure supplement 3B, Figures 5A-5C, Figure 6, and Figure 6- figure supplement 1.

Article and author information

Author details

  1. Guadalupe Sepulveda

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Mark Antkowiak

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ingrid Brust-Mascher

    Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Karan Mahe

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Tingyoung Ou

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Noemi M Castro

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Lana N Christensen

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lee Cheung

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Xueer Jiang

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniel Yoon

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Bo Huang

    Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Li-En Jao

    Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, Davis, United States
    For correspondence
    ljao@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5925-883X

Funding

University of California, Davis (New Faculty Startup Funds)

  • Li-En Jao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20169) of the University of California, Davis.

Copyright

© 2018, Sepulveda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,821
    views
  • 741
    downloads
  • 96
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Guadalupe Sepulveda
  2. Mark Antkowiak
  3. Ingrid Brust-Mascher
  4. Karan Mahe
  5. Tingyoung Ou
  6. Noemi M Castro
  7. Lana N Christensen
  8. Lee Cheung
  9. Xueer Jiang
  10. Daniel Yoon
  11. Bo Huang
  12. Li-En Jao
(2018)
Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates
eLife 7:e34959.
https://doi.org/10.7554/eLife.34959

Share this article

https://doi.org/10.7554/eLife.34959

Further reading

    1. Cell Biology
    2. Medicine
    Shuo He, Lei Huang ... Jinlong He
    Research Article

    Disturbed shear stress-induced endothelial atherogenic responses are pivotal in the initiation and progression of atherosclerosis, contributing to the uneven distribution of atherosclerotic lesions. This study investigates the role of Aff3ir-ORF2, a novel nested gene variant, in disturbed flow-induced endothelial cell activation and atherosclerosis. We demonstrate that disturbed shear stress significantly reduces Aff3ir-ORF2 expression in athero-prone regions. Using three distinct mouse models with manipulated Aff3ir-ORF2 expression, we demonstrate that Aff3ir-ORF2 exerts potent anti-inflammatory and anti-atherosclerotic effects in Apoe-/- mice. RNA sequencing revealed that interferon regulatory factor 5 (Irf5), a key regulator of inflammatory processes, mediates inflammatory responses associated with Aff3ir-ORF2 deficiency. Aff3ir-ORF2 interacts with Irf5, promoting its retention in the cytoplasm, thereby inhibiting the Irf5-dependent inflammatory pathways. Notably, Irf5 knockdown in Aff3ir-ORF2 deficient mice almost completely rescues the aggravated atherosclerotic phenotype. Moreover, endothelial-specific Aff3ir-ORF2 supplementation using the CRISPR/Cas9 system significantly ameliorated endothelial activation and atherosclerosis. These findings elucidate a novel role for Aff3ir-ORF2 in mitigating endothelial inflammation and atherosclerosis by acting as an inhibitor of Irf5, highlighting its potential as a valuable therapeutic approach for treating atherosclerosis.

    1. Cell Biology
    2. Genetics and Genomics
    Róża K Przanowska, Yuechuan Chen ... Anindya Dutta
    Research Article

    The six-subunit ORC is essential for the initiation of DNA replication in eukaryotes. Cancer cell lines in culture can survive and replicate DNA replication after genetic inactivation of individual ORC subunits, ORC1, ORC2, or ORC5. In primary cells, ORC1 was dispensable in the mouse liver for endo-reduplication, but this could be explained by the ORC1 homolog, CDC6, substituting for ORC1 to restore functional ORC. Here, we have created mice with a conditional deletion of ORC2, which does not have a homolog. Although mouse embryo fibroblasts require ORC2 for proliferation, mouse hepatocytes synthesize DNA in cell culture and endo-reduplicate in vivo without ORC2. Mouse livers endo-reduplicate after simultaneous deletion of ORC1 and ORC2 both during normal development and after partial hepatectomy. Since endo-reduplication initiates DNA synthesis like normal S phase replication these results unequivocally indicate that primary cells, like cancer cell lines, can load MCM2-7 and initiate replication without ORC.