Reduced expression of C/EBPβ-LIP extends health- and lifespan in mice

  1. Christine Müller
  2. Laura M Zidek
  3. Tobias Ackermann
  4. Tristan de Jong
  5. Peng Liu
  6. Verena Kliche
  7. Mohamad Amr Zaini
  8. Gertrud Kortman
  9. Liesbeth Harkema
  10. Dineke S Verbeek
  11. Jan P Tuckermann
  12. Julia von Maltzahn
  13. Alain de Bruin
  14. Victor Guryev
  15. Zhao-Qi Wang
  16. Cornelis F Calkhoven  Is a corresponding author
  1. University Medical Center Groningen, Netherlands
  2. Leibniz Institute on Ageing - Fritz Lipmann Institute, Germany
  3. University of Ulm, Germany
  4. Utrecht University, Netherlands

Abstract

Ageing is associated with physical decline and the development of age-related diseases such as metabolic disorders and cancer. Few conditions are known that attenuate the adverse effects of ageing, including calorie restriction (CR) and reduced signalling through the mechanistic target of rapamycin complex 1 (mTORC1) pathway. Synthesis of the metabolic transcription factor C/EBPβ-LIP is stimulated by mTORC1, which critically depends on a short upstream open reading frame (uORF) in the Cebpb-mRNA. Here we describe that reduced C/EBPβ-LIP expression due to genetic ablation of the uORF delays the development of age-associated phenotypes in mice. Moreover, female C/EBPβΔuORF mice display an extended lifespan. Since LIP levels increase upon aging in wild type mice, our data reveal an important role for C/EBPβ in the aging process and suggest that restriction of LIP expression sustains health and fitness. Thus, therapeutic strategies targeting C/EBPβ-LIP may offer new possibilities to treat age-related diseases and to prolong healthspan.

Data availability

For transcriptome dataset see: Müller, C., de Jong, T, Guryev, V, Calkhoven, CF. (2018). Transcriptome profiling of liver samples of C/EBPβΔuORF mice. Retrieved from: https://www.ebi.ac.uk/arrayexpress/

The following data sets were generated

Article and author information

Author details

  1. Christine Müller

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Laura M Zidek

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Tobias Ackermann

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Tristan de Jong

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Peng Liu

    Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Verena Kliche

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Mohamad Amr Zaini

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Gertrud Kortman

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Liesbeth Harkema

    Dutch Molecular Pathology Centre, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Dineke S Verbeek

    Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. Jan P Tuckermann

    Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Julia von Maltzahn

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Alain de Bruin

    Dutch Molecular Pathology Centre, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  14. Victor Guryev

    European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University Medical Center Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  15. Zhao-Qi Wang

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  16. Cornelis F Calkhoven

    European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
    For correspondence
    c.f.calkhoven@umcg.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6318-7210

Funding

Deutsche Forschungsgemeinschaft (CA 283/1-1)

  • Laura M Zidek
  • Cornelis F Calkhoven

Leibniz-Gemeinschaft (LGSA)

  • Tobias Ackermann
  • Cornelis F Calkhoven

Deutsche Forschungsgemeinschaft (MA 3975/2-1)

  • Laura M Zidek
  • Julia von Maltzahn

Deutsche Forschungsgemeinschaft (INST 40/492-1)

  • Peng Liu
  • Jan P Tuckermann

Deutsche Forschungsgemeinschaft (TU 220/6)

  • Peng Liu
  • Jan P Tuckermann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Ethics

Animal experimentation: All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the Thüringer Landesamt für Verbraucherschutz (#03-005/13) and University of Groningen (#6996A).

Version history

  1. Received: January 11, 2018
  2. Accepted: April 27, 2018
  3. Accepted Manuscript published: April 30, 2018 (version 1)
  4. Version of Record published: June 4, 2018 (version 2)

Copyright

© 2018, Müller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,074
    views
  • 861
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christine Müller
  2. Laura M Zidek
  3. Tobias Ackermann
  4. Tristan de Jong
  5. Peng Liu
  6. Verena Kliche
  7. Mohamad Amr Zaini
  8. Gertrud Kortman
  9. Liesbeth Harkema
  10. Dineke S Verbeek
  11. Jan P Tuckermann
  12. Julia von Maltzahn
  13. Alain de Bruin
  14. Victor Guryev
  15. Zhao-Qi Wang
  16. Cornelis F Calkhoven
(2018)
Reduced expression of C/EBPβ-LIP extends health- and lifespan in mice
eLife 7:e34985.
https://doi.org/10.7554/eLife.34985

Share this article

https://doi.org/10.7554/eLife.34985

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.