Abstract

Locomotion circuits developed in simple animals, and circuit motifs further evolved in higher animals. To understand locomotion circuit motifs, they must be characterized in many models. The nematode Caenorhabditis elegans possesses one of the best-studied circuits for undulatory movement. Yet, for 1/6th of the cholinergic motor neurons (MNs), the AS MNs, functional information is unavailable. Ventral nerve cord (VNC) MNs coordinate undulations, in small circuits of complementary neurons innervating opposing muscles. AS MNs differ, as they innervate muscles and other MNs asymmetrically, without complementary partners. We characterized AS MNs by optogenetic, behavioral and imaging analyses. They generate asymmetric muscle activation, enabling navigation, and contribute to coordination of dorso-ventral undulation as well as anterio-posterior bending wave propagation. AS MN activity correlated with forward and backward locomotion, and they functionally connect to premotor interneurons (PINs) for both locomotion regimes. Electrical feedback from AS MNs via gap junctions may affect only backward PINs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files are videos from live cell imaging and behavioral experiments. They are several terabytes in size and can therefore be provided upon request to the corresponding author.

Article and author information

Author details

  1. Oleg Tolstenkov

    Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Petrus Van der Auwera

    Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7540-4788
  3. Wagner Steuer Costa

    Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7707-2596
  4. Olga Bazhanova

    Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Tim M Gemeinhardt

    Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Amelie CF Bergs

    Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexander Gottschalk

    Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
    For correspondence
    a.gottschalk@em.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1197-6119

Funding

Deutsche Forschungsgemeinschaft (GO1011/4-2)

  • Petrus Van der Auwera
  • Wagner Steuer Costa
  • Alexander Gottschalk

Goethe University (GO-IN)

  • Oleg Tolstenkov

European Union Marie Curie Actions (PCOFUND-GA-2011-291776)

  • Oleg Tolstenkov

Deutsche Forschungsgemeinschaft (GO1011/8-1)

  • Oleg Tolstenkov
  • Alexander Gottschalk

Deutsche Forschungsgemeinschaft (EXC115/3)

  • Petrus Van der Auwera
  • Wagner Steuer Costa
  • Alexander Gottschalk

Max-Planck-Research School (IMPReS Membrane Biology)

  • Amelie CF Bergs

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Tolstenkov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,548
    views
  • 518
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oleg Tolstenkov
  2. Petrus Van der Auwera
  3. Wagner Steuer Costa
  4. Olga Bazhanova
  5. Tim M Gemeinhardt
  6. Amelie CF Bergs
  7. Alexander Gottschalk
(2018)
Functionally asymmetric motor neurons contribute to coordinating locomotion of Caenorhabditis elegans
eLife 7:e34997.
https://doi.org/10.7554/eLife.34997

Share this article

https://doi.org/10.7554/eLife.34997

Further reading

    1. Neuroscience
    Martina Held, Rituja S Bisen ... Jan M Ache
    Research Article

    Insulin plays a critical role in maintaining metabolic homeostasis. Since metabolic demands are highly dynamic, insulin release needs to be constantly adjusted. These adjustments are mediated by different pathways, most prominently the blood glucose level, but also by feedforward signals from motor circuits and different neuromodulatory systems. Here, we analyze how neuromodulatory inputs control the activity of the main source of insulin in Drosophila – a population of insulin-producing cells (IPCs) located in the brain. IPCs are functionally analogous to mammalian pancreatic beta cells, but their location makes them accessible for in vivo recordings in intact animals. We characterized functional inputs to IPCs using single-nucleus RNA sequencing analysis, anatomical receptor expression mapping, connectomics, and an optogenetics-based ‘intrinsic pharmacology’ approach. Our results show that the IPC population expresses a variety of receptors for neuromodulators and classical neurotransmitters. Interestingly, IPCs exhibit heterogeneous receptor profiles, suggesting that the IPC population can be modulated differentially. This is supported by electrophysiological recordings from IPCs, which we performed while activating different populations of modulatory neurons. Our analysis revealed that some modulatory inputs have heterogeneous effects on the IPC activity, such that they inhibit one subset of IPCs, while exciting another. Monitoring calcium activity across the IPC population uncovered that these heterogeneous responses occur simultaneously. Certain neuromodulatory populations shifted the IPC population activity towards an excited state, while others shifted it towards inhibition. Taken together, we provide a comprehensive, multi-level analysis of neuromodulation in the insulinergic system of Drosophila.

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.