Multi-scale mapping along the auditory hierarchy using high-resolution functional UltraSound in the awake ferret

  1. Célian Bimbard
  2. Charlie Demene
  3. Constantin Girard
  4. Susanne Radtke-Schuller
  5. Shihab Shamma
  6. Mickael Tanter  Is a corresponding author
  7. Yves Boubenec  Is a corresponding author
  1. CNRS UMR 8248, École Normale Supérieure, PSL Research University, France
  2. ESPCI ParisTech, PSL Research University, France

Abstract

A major challenge in neuroscience is to longitudinally monitor whole brain activity across multiple spatial scales in the same animal. Functional UltraSound (fUS) is an emerging technology that offers images of cerebral blood volume over large brain portions. Here we show for the first time its capability to resolve the functional organization of sensory systems at multiple scales in awake animals, both within small structures by precisely mapping and differentiating sensory responses, and between structures by elucidating the connectivity scheme of top-down projections. We demonstrate that fUS provides stable (over days), yet rapid, highly-resolved 3D tonotopic maps in the auditory pathway of awake ferrets, thus revealing its unprecedented functional resolution (100/300µm). This was performed in four different brain regions, including very small (1-2mm3 size), deeply situated subcortical (8mm deep) and previously undescribed structures in the ferret. Furthermore, we used fUS to map long-distance projections from frontal cortex, a key source of sensory response modulation, to auditory cortex.

Data availability

The data that support the findings of this study can be found at https://lsp.dec.ens.fr/en/research/supporting-materials-848. The full raw imaging files are >20Tb and are therefore available on request to the corresponding author.

The following data sets were generated

Article and author information

Author details

  1. Célian Bimbard

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, École Normale Supérieure, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Charlie Demene

    Institut Langevin, ESPCI ParisTech, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Constantin Girard

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, École Normale Supérieure, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Susanne Radtke-Schuller

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, École Normale Supérieure, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Shihab Shamma

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, École Normale Supérieure, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Mickael Tanter

    Institut Langevin, ESPCI ParisTech, PSL Research University, Paris, France
    For correspondence
    mickael.tanter@espci.fr
    Competing interests
    The authors declare that no competing interests exist.
  7. Yves Boubenec

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, École Normale Supérieure, PSL Research University, Paris, France
    For correspondence
    boubenec@ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0106-6947

Funding

European Commission (339244-FUSIMAGINE)

  • Charlie Demene
  • Mickael Tanter

European Commission (ADG_20110406-ADAM)

  • Célian Bimbard
  • Constantin Girard
  • Susanne Radtke-Schuller
  • Shihab Shamma
  • Yves Boubenec

Agence Nationale de la Recherche (ANR-10-LABX-0087 IEC)

  • Célian Bimbard
  • Constantin Girard
  • Shihab Shamma
  • Yves Boubenec

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL*)

  • Célian Bimbard
  • Charlie Demene
  • Constantin Girard
  • Susanne Radtke-Schuller
  • Shihab Shamma
  • Mickael Tanter
  • Yves Boubenec

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments were approved by the French Ministry of Agriculture (protocol authorization: 01236.02) and strictly comply with the European directives on the protection of animals used for scientific purposes (2010/63/EU). All surgery was performed under anaesthesia (isoflurane 1%), and every effort was made to minimize suffering.

Copyright

© 2018, Bimbard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,584
    views
  • 396
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Célian Bimbard
  2. Charlie Demene
  3. Constantin Girard
  4. Susanne Radtke-Schuller
  5. Shihab Shamma
  6. Mickael Tanter
  7. Yves Boubenec
(2018)
Multi-scale mapping along the auditory hierarchy using high-resolution functional UltraSound in the awake ferret
eLife 7:e35028.
https://doi.org/10.7554/eLife.35028

Share this article

https://doi.org/10.7554/eLife.35028

Further reading

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.

    1. Neuroscience
    Mihály Vöröslakos, Yunchang Zhang ... György Buzsáki
    Tools and Resources

    Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism’s responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal’s natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, we observed that mice avoided the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of mice. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory–consummatory transitions, and open new options for studying behavior-mediated temperature homeostasis.