Multi-scale mapping along the auditory hierarchy using high-resolution functional UltraSound in the awake ferret

  1. Célian Bimbard
  2. Charlie Demene
  3. Constantin Girard
  4. Susanne Radtke-Schuller
  5. Shihab Shamma
  6. Mickael Tanter  Is a corresponding author
  7. Yves Boubenec  Is a corresponding author
  1. CNRS UMR 8248, École Normale Supérieure, PSL Research University, France
  2. ESPCI ParisTech, PSL Research University, France

Abstract

A major challenge in neuroscience is to longitudinally monitor whole brain activity across multiple spatial scales in the same animal. Functional UltraSound (fUS) is an emerging technology that offers images of cerebral blood volume over large brain portions. Here we show for the first time its capability to resolve the functional organization of sensory systems at multiple scales in awake animals, both within small structures by precisely mapping and differentiating sensory responses, and between structures by elucidating the connectivity scheme of top-down projections. We demonstrate that fUS provides stable (over days), yet rapid, highly-resolved 3D tonotopic maps in the auditory pathway of awake ferrets, thus revealing its unprecedented functional resolution (100/300µm). This was performed in four different brain regions, including very small (1-2mm3 size), deeply situated subcortical (8mm deep) and previously undescribed structures in the ferret. Furthermore, we used fUS to map long-distance projections from frontal cortex, a key source of sensory response modulation, to auditory cortex.

Data availability

The data that support the findings of this study can be found at https://lsp.dec.ens.fr/en/research/supporting-materials-848. The full raw imaging files are >20Tb and are therefore available on request to the corresponding author.

The following data sets were generated

Article and author information

Author details

  1. Célian Bimbard

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, École Normale Supérieure, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Charlie Demene

    Institut Langevin, ESPCI ParisTech, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Constantin Girard

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, École Normale Supérieure, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Susanne Radtke-Schuller

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, École Normale Supérieure, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Shihab Shamma

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, École Normale Supérieure, PSL Research University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Mickael Tanter

    Institut Langevin, ESPCI ParisTech, PSL Research University, Paris, France
    For correspondence
    mickael.tanter@espci.fr
    Competing interests
    The authors declare that no competing interests exist.
  7. Yves Boubenec

    Laboratoire des Systèmes Perceptifs, CNRS UMR 8248, École Normale Supérieure, PSL Research University, Paris, France
    For correspondence
    boubenec@ens.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0106-6947

Funding

European Commission (339244-FUSIMAGINE)

  • Charlie Demene
  • Mickael Tanter

European Commission (ADG_20110406-ADAM)

  • Célian Bimbard
  • Constantin Girard
  • Susanne Radtke-Schuller
  • Shihab Shamma
  • Yves Boubenec

Agence Nationale de la Recherche (ANR-10-LABX-0087 IEC)

  • Célian Bimbard
  • Constantin Girard
  • Shihab Shamma
  • Yves Boubenec

Agence Nationale de la Recherche (ANR-10-IDEX-0001-02 PSL*)

  • Célian Bimbard
  • Charlie Demene
  • Constantin Girard
  • Susanne Radtke-Schuller
  • Shihab Shamma
  • Mickael Tanter
  • Yves Boubenec

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew J King, University of Oxford, United Kingdom

Ethics

Animal experimentation: Experiments were approved by the French Ministry of Agriculture (protocol authorization: 01236.02) and strictly comply with the European directives on the protection of animals used for scientific purposes (2010/63/EU). All surgery was performed under anaesthesia (isoflurane 1%), and every effort was made to minimize suffering.

Version history

  1. Received: January 13, 2018
  2. Accepted: June 16, 2018
  3. Accepted Manuscript published: June 28, 2018 (version 1)
  4. Version of Record published: July 10, 2018 (version 2)

Copyright

© 2018, Bimbard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,389
    Page views
  • 363
    Downloads
  • 37
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Célian Bimbard
  2. Charlie Demene
  3. Constantin Girard
  4. Susanne Radtke-Schuller
  5. Shihab Shamma
  6. Mickael Tanter
  7. Yves Boubenec
(2018)
Multi-scale mapping along the auditory hierarchy using high-resolution functional UltraSound in the awake ferret
eLife 7:e35028.
https://doi.org/10.7554/eLife.35028

Share this article

https://doi.org/10.7554/eLife.35028

Further reading

    1. Neuroscience
    Kiwamu Kudo, Kamalini G Ranasinghe ... Srikantan S Nagarajan
    Research Article

    Alzheimer’s disease (AD) is characterized by the accumulation of amyloid-β and misfolded tau proteins causing synaptic dysfunction, and progressive neurodegeneration and cognitive decline. Altered neural oscillations have been consistently demonstrated in AD. However, the trajectories of abnormal neural oscillations in AD progression and their relationship to neurodegeneration and cognitive decline are unknown. Here, we deployed robust event-based sequencing models (EBMs) to investigate the trajectories of long-range and local neural synchrony across AD stages, estimated from resting-state magnetoencephalography. The increases in neural synchrony in the delta-theta band and the decreases in the alpha and beta bands showed progressive changes throughout the stages of the EBM. Decreases in alpha and beta band synchrony preceded both neurodegeneration and cognitive decline, indicating that frequency-specific neuronal synchrony abnormalities are early manifestations of AD pathophysiology. The long-range synchrony effects were greater than the local synchrony, indicating a greater sensitivity of connectivity metrics involving multiple regions of the brain. These results demonstrate the evolution of functional neuronal deficits along the sequence of AD progression.

    1. Cell Biology
    2. Neuroscience
    Zhenyong Wu, Grant F Kusick ... Shigeki Watanabe
    Research Article

    Despite decades of intense study, the molecular basis of asynchronous neurotransmitter release remains enigmatic. Synaptotagmin (syt) 7 and Doc2 have both been proposed as Ca2+ sensors that trigger this mode of exocytosis, but conflicting findings have led to controversy. Here, we demonstrate that at excitatory mouse hippocampal synapses, Doc2α is the major Ca2+ sensor for asynchronous release, while syt7 supports this process through activity-dependent docking of synaptic vesicles. In synapses lacking Doc2α, asynchronous release after single action potentials is strongly reduced, while deleting syt7 has no effect. However, in the absence of syt7, docked vesicles cannot be replenished on millisecond timescales. Consequently, both synchronous and asynchronous release depress from the second pulse onward during repetitive activity. By contrast, synapses lacking Doc2α have normal activity-dependent docking, but continue to exhibit decreased asynchronous release after multiple stimuli. Moreover, disruption of both Ca2+ sensors is non-additive. These findings result in a new model whereby syt7 drives activity-dependent docking, thus providing synaptic vesicles for synchronous (syt1) and asynchronous (Doc2 and other unidentified sensors) release during ongoing transmission.