Normal mitochondrial function in Saccharomyces cerevisiae has become dependent on inefficient splicing

  1. Marina Rudan
  2. Peter Bou Dib
  3. Marina Musa
  4. Matea Kanunnikau
  5. Sandra Sobočanec
  6. David Rueda
  7. Tobias Warnecke  Is a corresponding author
  8. Anita Kriško  Is a corresponding author
  1. Mediterranean Institute for Life Sciences, Croatia
  2. Universitätsmedizin Göttingen, Germany
  3. Rudjer Boškovic Institute, Croatia
  4. MRC London Institute of Medical Sciences, United Kingdom

Abstract

Self-splicing introns are mobile elements that have invaded a number of highly conserved genes in prokaryotic and organellar genomes. Here, we show that deletion of these selfish elements from the Saccharomyces cerevisiae mitochondrial genome is stressful to the host. A strain without mitochondrial introns displays hallmarks of the retrograde response, with altered mitochondrial morphology, gene expression and metabolism impacting growth and lifespan. Deletion of the complete suite of mitochondrial introns is phenocopied by overexpression of the splicing factor Mss116. We show that, in both cases, abnormally efficient transcript maturation results in excess levels of mature cob and cox1 host mRNA. Thus, inefficient splicing has become an integral part of normal mitochondrial gene expression. We propose that the persistence of S. cerevisiae self-splicing introns has been facilitated by an evolutionary lock-in event, where the host genome adapted to primordial invasion in a way that incidentally rendered subsequent intron loss deleterious.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Marina Rudan

    Mediterranean Institute for Life Sciences, Split, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  2. Peter Bou Dib

    Institut für Zellbiochemie, Universitätsmedizin Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7146-8271
  3. Marina Musa

    Mediterranean Institute for Life Sciences, Split, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  4. Matea Kanunnikau

    Mediterranean Institute for Life Sciences, Split, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  5. Sandra Sobočanec

    Division for Molecular Medicine, Rudjer Boškovic Institute, Zagreb, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  6. David Rueda

    MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Tobias Warnecke

    MRC London Institute of Medical Sciences, London, United Kingdom
    For correspondence
    tobias.warnecke@lms.mrc.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4936-5428
  8. Anita Kriško

    Mediterranean Institute for Life Sciences, Split, Croatia
    For correspondence
    anita.krisko@medils.hr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7273-0190

Funding

NAOS Group

  • Marina Rudan
  • Marina Musa
  • Matea Kanunnikau
  • Anita Kriško

Mediterrenean Institute of Life Sciences

  • Marina Rudan
  • Marina Musa
  • Matea Kanunnikau
  • Anita Kriško

Imperial College London (Junior Research Fellowship)

  • Tobias Warnecke

Medical Research Council (Core funding)

  • Tobias Warnecke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy W Nilsen, Case Western Reserve University, United States

Version history

  1. Received: January 23, 2018
  2. Accepted: March 19, 2018
  3. Accepted Manuscript published: March 23, 2018 (version 1)
  4. Version of Record published: April 13, 2018 (version 2)

Copyright

© 2018, Rudan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,479
    views
  • 416
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marina Rudan
  2. Peter Bou Dib
  3. Marina Musa
  4. Matea Kanunnikau
  5. Sandra Sobočanec
  6. David Rueda
  7. Tobias Warnecke
  8. Anita Kriško
(2018)
Normal mitochondrial function in Saccharomyces cerevisiae has become dependent on inefficient splicing
eLife 7:e35330.
https://doi.org/10.7554/eLife.35330

Share this article

https://doi.org/10.7554/eLife.35330

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.