Normal mitochondrial function in Saccharomyces cerevisiae has become dependent on inefficient splicing

  1. Marina Rudan
  2. Peter Bou Dib
  3. Marina Musa
  4. Matea Kanunnikau
  5. Sandra Sobočanec
  6. David Rueda
  7. Tobias Warnecke  Is a corresponding author
  8. Anita Kriško  Is a corresponding author
  1. Mediterranean Institute for Life Sciences, Croatia
  2. Universitätsmedizin Göttingen, Germany
  3. Rudjer Boškovic Institute, Croatia
  4. MRC London Institute of Medical Sciences, United Kingdom

Abstract

Self-splicing introns are mobile elements that have invaded a number of highly conserved genes in prokaryotic and organellar genomes. Here, we show that deletion of these selfish elements from the Saccharomyces cerevisiae mitochondrial genome is stressful to the host. A strain without mitochondrial introns displays hallmarks of the retrograde response, with altered mitochondrial morphology, gene expression and metabolism impacting growth and lifespan. Deletion of the complete suite of mitochondrial introns is phenocopied by overexpression of the splicing factor Mss116. We show that, in both cases, abnormally efficient transcript maturation results in excess levels of mature cob and cox1 host mRNA. Thus, inefficient splicing has become an integral part of normal mitochondrial gene expression. We propose that the persistence of S. cerevisiae self-splicing introns has been facilitated by an evolutionary lock-in event, where the host genome adapted to primordial invasion in a way that incidentally rendered subsequent intron loss deleterious.

Data availability

The following data sets were generated

Article and author information

Author details

  1. Marina Rudan

    Mediterranean Institute for Life Sciences, Split, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  2. Peter Bou Dib

    Institut für Zellbiochemie, Universitätsmedizin Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7146-8271
  3. Marina Musa

    Mediterranean Institute for Life Sciences, Split, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  4. Matea Kanunnikau

    Mediterranean Institute for Life Sciences, Split, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  5. Sandra Sobočanec

    Division for Molecular Medicine, Rudjer Boškovic Institute, Zagreb, Croatia
    Competing interests
    The authors declare that no competing interests exist.
  6. David Rueda

    MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Tobias Warnecke

    MRC London Institute of Medical Sciences, London, United Kingdom
    For correspondence
    tobias.warnecke@lms.mrc.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4936-5428
  8. Anita Kriško

    Mediterranean Institute for Life Sciences, Split, Croatia
    For correspondence
    anita.krisko@medils.hr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7273-0190

Funding

NAOS Group

  • Marina Rudan
  • Marina Musa
  • Matea Kanunnikau
  • Anita Kriško

Mediterrenean Institute of Life Sciences

  • Marina Rudan
  • Marina Musa
  • Matea Kanunnikau
  • Anita Kriško

Imperial College London (Junior Research Fellowship)

  • Tobias Warnecke

Medical Research Council (Core funding)

  • Tobias Warnecke

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Rudan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,539
    views
  • 424
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marina Rudan
  2. Peter Bou Dib
  3. Marina Musa
  4. Matea Kanunnikau
  5. Sandra Sobočanec
  6. David Rueda
  7. Tobias Warnecke
  8. Anita Kriško
(2018)
Normal mitochondrial function in Saccharomyces cerevisiae has become dependent on inefficient splicing
eLife 7:e35330.
https://doi.org/10.7554/eLife.35330

Share this article

https://doi.org/10.7554/eLife.35330

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Federico A Vignale, Andrea Hernandez Garcia ... Adrian G Turjanski
    Research Article

    Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.