cisTEM, User-friendly software for single-particle image processing

  1. Timothy Grant  Is a corresponding author
  2. Alexis Rohou  Is a corresponding author
  3. Nikolaus Grigorieff  Is a corresponding author
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

We have developed new open-source software called cisTEM (computational imaging system for transmission electron microscopy) for the processing of data for high-resolution electron cryo-microscopy and single-particle averaging. cisTEM features a graphical user interface that is used to submit jobs, monitor their progress, and display results. It implements a full processing pipeline including movie processing, image defocus determination, automatic particle picking, 2D classification, ab-initio 3D map generation from random parameters, 3D classification, and high-resolution refinement and reconstruction. Some of these steps implement newly-developed algorithms; others were adapted from previously published algorithms. The software is optimized to enable processing of typical datasets (2000 micrographs, 200k - 300k particles) on a high-end, CPU-based workstation in half a day or less, comparable to GPU-accelerated processing. Jobs can also be scheduled on large computer clusters using flexible run profiles that can be adapted for most computing environments. cisTEM is available for download from cistem.org.

Data availability

The following previously published data sets were used

Article and author information

Author details

  1. Timothy Grant

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    tim@tgrant.co.uk
    Competing interests
    No competing interests declared.
  2. Alexis Rohou

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    a.rohou@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3343-9621
  3. Nikolaus Grigorieff

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    niko@grigorieff.org
    Competing interests
    Nikolaus Grigorieff, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1506-909X

Funding

Howard Hughes Medical Institute

  • Timothy Grant
  • Alexis Rohou
  • Nikolaus Grigorieff

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Grant et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,436
    views
  • 1,626
    downloads
  • 817
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Timothy Grant
  2. Alexis Rohou
  3. Nikolaus Grigorieff
(2018)
cisTEM, User-friendly software for single-particle image processing
eLife 7:e35383.
https://doi.org/10.7554/eLife.35383

Share this article

https://doi.org/10.7554/eLife.35383

Further reading

    1. Structural Biology and Molecular Biophysics
    Mart GF Last, Leoni Abendstein ... Thomas H Sharp
    Tools and Resources

    Segmentation is a critical data processing step in many applications of cryo-electron tomography. Downstream analyses, such as subtomogram averaging, are often based on segmentation results, and are thus critically dependent on the availability of open-source software for accurate as well as high-throughput tomogram segmentation. There is a need for more user-friendly, flexible, and comprehensive segmentation software that offers an insightful overview of all steps involved in preparing automated segmentations. Here, we present Ais: a dedicated tomogram segmentation package that is geared towards both high performance and accessibility, available on GitHub. In this report, we demonstrate two common processing steps that can be greatly accelerated with Ais: particle picking for subtomogram averaging, and generating many-feature segmentations of cellular architecture based on in situ tomography data. Featuring comprehensive annotation, segmentation, and rendering functionality, as well as an open repository for trained models at aiscryoet.org, we hope that Ais will help accelerate research and dissemination of data involving cryoET.

    1. Structural Biology and Molecular Biophysics
    Mrityunjay Singh, Dinesh C Indurthi ... Shailendra Asthana
    Research Advance

    Agonists enhance receptor activity by providing net-favorable binding energy to active over resting conformations, with efficiency (η) linking binding energy to gating. Previously, we showed that in nicotinic receptors, η-values are grouped into five structural pairs, correlating efficacy and affinity within each class, uniting binding with allosteric activation (Indurthi and Auerbach, 2023). Here, we use molecular dynamics (MD) simulations to investigate the low-to-high affinity transition (L→H) at the Torpedo α−δ nicotinic acetylcholine receptor neurotransmitter site. Using four agonists spanning three η-classes, the simulations reveal the structural basis of the L→H transition where: the agonist pivots around its cationic center (‘flip’), loop C undergoes staged downward displacement (‘flop’), and a compact, stable high-affinity pocket forms (‘fix’). The η derived from binding energies calculated in silico matched exact values measured experimentally in vitro. Intermediate states of the orthosteric site during receptor activation are apparent only in simulations, but could potentially be observed experimentally via time-resolved structural studies.