Neuromuscular Disease: Protecting the nerve terminals

Maintaining the connections between nerve cells and muscle could help to slow the progression of amyotrophic lateral sclerosis.
  1. Jonathan D Glass  Is a corresponding author
  1. Emory University School of Medicine, United States

It is generally accepted in neurobiology that the integrity of the axon – the cable-like extensions that transmit information between neurons, muscles and sensory receptors – is wholly dependent on the health of the neuron cell body. This concept has been a guiding principle in the search for experimental therapeutics to treat neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. In this approach, protecting the cell body of the neuron should help to slow down or even stop the progression of neurodegeneration.

However, growing evidence from experiments in animals and observations in humans has shown that neurons, axons, and even the nerve terminals (which connect to the target muscle) respond differently to damage. This suggests that independent mechanisms of neurodegeneration may be at play in different regions of the neuron (Conforti et al., 2007, 2014). Therefore, treatments may need to target the entire neuron to achieve a significant therapeutic impact.

Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease that strikes without warning, typically in the prime of life. People with ALS become progressively weaker, which ruthlessly leads to disability, loss of independence and ultimately death. Therapeutic interventions are largely palliative, and dozens of clinical trials over the past three decades have failed to identify treatments that can slow down – never mind reverse or stop – the progression of this disease.

Promising results from pre-clinical experiments in animal models of the disease have not been successfully translated to humans, and the reasons for these failures are hotly debated. Of particular interest, largely because the findings are paradoxical, have been interventions in animal models of ALS that demonstrated near complete protection of the cell bodies of motor neurons, but failed to slow the progression of the disease. In these cases, protection of the motor neuron cell body by a variety of techniques did not prevent the loss of connectivity between the nerve terminals and the muscle (Gould et al., 2006; Parone et al., 2013; Klivenyi et al., 1999; Suzuki et al., 2007). This loss of connectivity is known as denervation.

Experimental studies in animal models of ALS have shown that the degenerative process of the disease starts at the nerve terminals and progresses proximally to the axon and eventually to the cell body of the neuron, a pattern described as ‘dying-back’ (Frey et al., 2000; Fischer et al., 2004). As with any ‘electrical’ system, the separation of the wire (the axon) from its target (the muscle) results in loss of function – or in the case of ALS, weakness and death. Now, in eLife, Steven Burden and colleagues from NYU Medical School and Columbia University – including Sarah Cantor as first author – report that protecting the connection between nerve and muscle could slow down the progress of the disease (Cantor et al., 2018).

The motor neuron connects to the muscles at the so called neuromuscular junction, through which the neuron transmits signals to activate muscle contraction (Figure 1). Many proteins help to maintain this connection, including one called MuSK (Burden et al., 2013). During development, MuSK stimulates the attachment of the nerve terminal to the muscle. Later in life, MuSK is necessary to stabilize and maintain the neuromuscular junction, which ensures that signals can travel between the muscle, the nerve terminal and the motor axon. Indeed, damage or mutations to the MuSK gene are linked to other neuromuscular diseases.

The somatic nervous system.

(A) A schematic representation of the neuromuscular system. The sensory neurons (shown in blue) convey information (in the form of electrical pulses) from different parts of the body to the brain. Motor neurons (red) in the brain and the spinal cord send electrical pulses along the axons (which form the motor nerve) to the muscle fibers to make them contract. In diseases such as amyotrophic lateral sclerosis, there is evidence that degeneration begins at the neuromuscular junction between the terminals of the axons and the muscle and progresses along the axon towards the cell body. (B) Fluorescence microscopy of the neuromuscular junction (NMJ). The panels on the left show a fully innervated neuromuscular junction, with the axon labeled in green (top left) and the muscle labeled in red (middle left). The merged panel (bottom left) shows the complete overlap of the nerve terminal with the muscle (yellow). The panels on the right show a denervated neuromuscular junction in which the axon no longer overlaps with the muscle.

Cantor et al. used a well-characterized mouse model of ALS to test if intervening with already damaged neuromuscular junctions could slow the progression of the disease. Their approach involved using an antibody that binds to and stimulates the activation of MuSK. The results showed that with the antibody, the neuromuscular junctions remained intact and functional for an extended period. In addition, the death of motor neurons was delayed, indicating that maintenance of muscle innervation plays a role in the support of the motor neuron cell body.

But even so, the animals only survived several days longer than normally. This might be due to the aggressive nature of the disease in this animal model, or possibly due to the lack of therapeutic targeting of the motor neuron cell bodies. Nevertheless, these findings suggest that protection of the neuromuscular junction could be a way to slow disease progression and keep neurons alive.

The pathogenesis and progression of ALS is an enigmatic and vexingly unresolved neurobiological problem. Genes and cellular pathways that represent possible upstream drivers of the disease are being discovered on a regular basis, and all of these may be specifically targeted. However, the approach of protecting neuromuscular junctions by targeting the underlying biology of maintenance is agnostic to these upstream mechanisms and is also not specific to ALS. It could therefore help to preserve function in a variety of neuromuscular diseases where denervation is a major pathological feature.


    1. Frey D
    2. Schneider C
    3. Xu L
    4. Borg J
    5. Spooren W
    6. Caroni P
    Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases
    The Journal of Neuroscience 20:2534–2542.

Article and author information

Author details

  1. Jonathan D Glass

    Jonathan D Glass is in the Emory ALS Center, Emory University School of Medicine, Atlanta, United States

    For correspondence
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3295-4971

Publication history

  1. Version of Record published: March 19, 2018 (version 1)


© 2018, Glass

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 1,321
    Page views
  • 119
  • 2

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan D Glass
Neuromuscular Disease: Protecting the nerve terminals
eLife 7:e35664.

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Jinli Geng, Yingjun Tang ... Xiaodong Liu
    Research Article

    Dynamic Ca2+ signals reflect acute changes in membrane excitability (e.g. responses to stimuli), and also mediate intracellular signaling cascades that normally take longer time to manifest (e.g., regulations of transcription). In both cases, chronic Ca2+ imaging has been often desired, but largely hindered by unexpected cytotoxicity intrinsic to GCaMP, a popular series of genetically-encoded Ca2+ indicators. Here, we demonstrate the performance of GCaMP-X in chronic Ca2+ imaging with long-term probe expression in cortical neurons, which has been designed to eliminate the unwanted interactions between conventional GCaMP indicators and endogenous (apo)calmodulin-binding proteins. By expressing in live adult mice at high levels over an extended time frame, GCaMP-X indicators showed less damage and improved performance in two-photon imaging of acute Ca2+ responses to whisker deflection or spontaneous Ca2+ fluctuations. Chronic Ca2+ imaging data (³1 month) were acquired from cultured cortical neurons expressing GCaMP-X, unveiling that spontaneous/local Ca2+ transients would progressively develop into autonomous/global Ca2+ oscillations. Besides the morphological indices of neurite length and soma size, the major metrics of oscillatory Ca2+, including rate, amplitude and synchrony were also examined along with the multiple stages (from neonatal to mature) during neural development. Dysregulations of both neuritogenesis and Ca2+ oscillations were observed typically in 2-3 weeks, which were exacerbated by stronger or prolonged expression of GCaMP. In comparison, neurons expressing GCaMP-X exhibited significantly less damage. By varying the timepoints of virus infection or drug induction, GCaMP-X outperformed GCaMP similarly in cultured mature neurons. These data altogether highlight the unique importance of oscillatory Ca2+ to morphology and health of neurons, presumably underlying the differential performance between GCaMP-X and GCaMP. In summary, GCaMP-X provides a viable option for Ca2+ imaging applications involving long-time and/or high-level expression of Ca2+ probes.

    1. Neuroscience
    Guy Avraham, Jordan A Taylor ... Samuel David McDougle
    Research Article

    Traditional associative learning tasks focus on the formation of associations between salient events and arbitrary stimuli that predict those events. This is exemplified in cerebellar-dependent delay eyeblink conditioning, where arbitrary cues such as a light or tone act as conditioning stimuli (CSs) that predict aversive sensations at the cornea (unconditioned stimulus, US). Here we ask if a similar framework could be applied to another type of cerebellar-dependent sensorimotor learning – sensorimotor adaptation. Models of sensorimotor adaptation posit that the introduction of an environmental perturbation results in an error signal that is used to update an internal model of a sensorimotor map for motor planning. Here we take a step towards an integrative account of these two forms of cerebellar-dependent learning, examining the relevance of core concepts from associative learning for sensorimotor adaptation. Using a visuomotor adaptation reaching task, we paired movement-related feedback (US) with neutral auditory or visual contextual cues that served as conditioning stimuli (CSs). Trial-by-trial changes in feedforward movement kinematics exhibited three key signatures of associative learning: Differential conditioning, sensitivity to the CS-US interval, and compound conditioning. Moreover, after compound conditioning, a robust negative correlation was observed between responses to the two elemental CSs of the compound (i.e., overshadowing), consistent with the additivity principle posited by theories of associative learning. The existence of associative learning effects in sensorimotor adaptation provides a proof-of-concept for linking cerebellar-dependent learning paradigms within a common theoretical framework.