Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions

  1. Yue Wang
  2. Yuan Shang
  3. Jianchao Li
  4. Weidi Chen
  5. Gang Li
  6. Jun Wan
  7. Wei Liu
  8. Mingjie Zhang  Is a corresponding author
  1. Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, China
  2. Hong Kong University of Science and Technology, Hong Kong
  3. The Hong Kong University of Science and Technology, Hong Kong

Abstract

The Eph receptor tyrosine kinase (RTK) family is the largest subfamily of RTKs playing critical roles in many developmental processes such as tissue patterning, neurogenesis and neuronal circuit formation, angiogenesis, etc. How the 14 Eph proteins, via their highly similar cytoplasmic domains, can transmit diverse and sometimes opposite cellular signals upon engaging ephrins is a major unresolved question. Here we systematically investigated the bindings of each SAM domain of Eph receptors to the SAM domains from SHIP2 and Odin, and uncover a highly specific SAM-SAM interaction-mediated cytoplasmic Eph-effector binding pattern. Comparative X-ray crystallographic studies of several SAM-SAM heterodimer complexes, together with biochemical and cell biology experiments, not only revealed the exquisite specificity code governing Eph/effector interactions but also allowed us to identify SAMD5 as a new Eph binding partner. Finally, these Eph/effector SAM heterodimer structures can explain many Eph SAM mutations identified in patients suffering from cancers and other diseases.

Data availability

The structure factors and the coordinates of the structures reported in this work have been deposited to PDB under the accession codes of 5ZRX, 5ZRY and 5ZRZ for the EphA2/SHIP2, EphA6/Odin and EphA5/SAMD5 complex structures, respectively.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Yue Wang

    Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
  2. Yuan Shang

    Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
  3. Jianchao Li

    Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8921-1626
  4. Weidi Chen

    Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
  5. Gang Li

    Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
  6. Jun Wan

    Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
  7. Wei Liu

    Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8250-2562
  8. Mingjie Zhang

    Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    For correspondence
    mzhang@ust.hk
    Competing interests
    Mingjie Zhang, Reviewing editor, <i>eLife</i>.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9404-0190

Funding

Minister of Science and Technology of China (2014CB910204)

  • Mingjie Zhang

Natural Science Foundation of Guangdong Province (2016A030312016)

  • Mingjie Zhang

Shenzhen Basic Research Grant, Shenzhen, China (JCYJ20160229153100269)

  • Wei Liu

National Natural Science Foundation of China (31670765)

  • Wei Liu

Asia Fund for Cancer Research (AFCR17SC01)

  • Mingjie Zhang

Minister of Science and Technology of China (2016YFA0501903)

  • Mingjie Zhang

Shenzhen Basic Research Grant, Shenzhen, China (JCYJ20160427185712266)

  • Wei Liu

Shenzhen Basic Research Grant, Shenzhen, China (JCYJ20170411090807530)

  • Wei Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,026
    views
  • 400
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yue Wang
  2. Yuan Shang
  3. Jianchao Li
  4. Weidi Chen
  5. Gang Li
  6. Jun Wan
  7. Wei Liu
  8. Mingjie Zhang
(2018)
Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions
eLife 7:e35677.
https://doi.org/10.7554/eLife.35677

Share this article

https://doi.org/10.7554/eLife.35677

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.