Evolution of gene dosage on the Z-chromosome of schistosome parasites

  1. Marion A L Picard
  2. Celine Cosseau
  3. Sabrina Ferré
  4. Thomas Quack
  5. Christoph Grevelding
  6. Yohann Couté
  7. Beatriz Vicoso  Is a corresponding author
  1. Institute of Science and Technology Austria, Austria
  2. University of Perpignan via Domitia, France
  3. Université Grenoble - Alpes, CEA, France
  4. Justus-Liebig-Universität, Germany

Abstract

XY systems usually show chromosome-wide compensation of X-linked genes, while in many ZW systems, compensation is restricted to a minority of dosage sensitive genes. Why such differences arose is still unclear. Here, we combine comparative genomics, transcriptomics and proteomics to obtain a complete overview of the evolution of gene dosage on the Z-chromosome of Schistosoma parasites. We compare the Z-chromosome gene content of African (Schistosoma mansoni and S. haematobium) and Asian (S. japonicum) schistosomes, and describe lineage-specific evolutionary strata. We use these to assess gene expression evolution following sex-linkage. The resulting patterns suggest a reduction in expression of Z-linked genes in females, combined with up-regulation of the Z in both sexes, in line with the first step of Ohno's classic model of dosage compensation evolution. Quantitative proteomics suggest that post-transcriptional mechanisms do not play a major role in balancing the expression of Z-linked genes.

Data availability

Sequencing data have been deposited to the NCBI short reads archive (PRJNA432803).Proteomic dosage values as well as final versions of the processed datasets (genomic coverage, expression values, chromosomal assignments) have been deposited into the IST Austria Data Repository (http://dx.doi.org/10.15479/AT:ISTA:109).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Marion A L Picard

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8101-2518
  2. Celine Cosseau

    IHPE UMR 5244, University of Perpignan via Domitia, Perpignan, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabrina Ferré

    Laboratoire Biologie à Grande Echelle (BGE), Université Grenoble - Alpes, CEA, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Quack

    Institute for Parasitology, Justus-Liebig-Universität, Giessen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Christoph Grevelding

    Institute for Parasitology, Justus-Liebig-Universität, Giessen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Yohann Couté

    Laboratoire Biologie à Grande Echelle (BGE), Université Grenoble - Alpes, CEA, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3896-6196
  7. Beatriz Vicoso

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    For correspondence
    beatriz.vicoso@ist.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4579-8306

Funding

Austrian Science Fund (P28842)

  • Beatriz Vicoso

Proteomics France Infrastructure (ANR-10-INBS-08-01)

  • Yohann Couté

Labex GRAL (ANR-10-LABX-49-01)

  • Yohann Couté

Wellcome Trust (107475/Z/15/Z)

  • Thomas Quack
  • Christoph Grevelding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Picard et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,254
    views
  • 238
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marion A L Picard
  2. Celine Cosseau
  3. Sabrina Ferré
  4. Thomas Quack
  5. Christoph Grevelding
  6. Yohann Couté
  7. Beatriz Vicoso
(2018)
Evolution of gene dosage on the Z-chromosome of schistosome parasites
eLife 7:e35684.
https://doi.org/10.7554/eLife.35684

Share this article

https://doi.org/10.7554/eLife.35684

Further reading

    1. Evolutionary Biology
    Asher D Cutter
    Review Article

    Haldane’s rule occupies a special place in biology as one of the few ‘rules’ of speciation, with empirical support from hundreds of species. And yet, its classic purview is restricted taxonomically to the subset of organisms with heteromorphic sex chromosomes. I propose explicit acknowledgement of generalized hypotheses about Haldane’s rule that frame sex bias in hybrid dysfunction broadly and irrespective of the sexual system. The consensus view of classic Haldane’s rule holds that sex-biased hybrid dysfunction across taxa is a composite phenomenon that requires explanations from multiple causes. Testing of the multiple alternative hypotheses for Haldane’s rule is, in many cases, applicable to taxa with homomorphic sex chromosomes, environmental sex determination, haplodiploidy, and hermaphroditism. Integration of a variety of biological phenomena about hybrids across diverse sexual systems, beyond classic Haldane’s rule, will help to derive a more general understanding of the contributing forces and mechanisms that lead to predictable sex biases in evolutionary divergence and speciation.

    1. Evolutionary Biology
    Zofia Dubicka, Jarosław Tyszka ... Ulf Bickmeyer
    Research Article

    Living organisms control the formation of mineral skeletons and other structures through biomineralization. Major phylogenetic groups usually consistently follow a single biomineralization pathway. Foraminifera, which are very efficient marine calcifiers, making a substantial contribution to global carbonate production and global carbon sequestration, are regarded as an exception. This phylum has been commonly thought to follow two contrasting models of either in situ ‘mineralization of extracellular matrix’ attributed to hyaline rotaliid shells, or ‘mineralization within intracellular vesicles’ attributed to porcelaneous miliolid shells. Our previous results on rotaliids along with those on miliolids in this paper question such a wide divergence of biomineralization pathways within the same phylum of Foraminifera. We have found under a high-resolution scanning electron microscopy (SEM) that precipitation of high-Mg calcitic mesocrystals in porcelaneous shells takes place in situ and form a dense, chaotic meshwork of needle-like crystallites. We have not observed calcified needles that already precipitated in the transported vesicles, what challenges the previous model of miliolid mineralization. Hence, Foraminifera probably utilize less divergent calcification pathways, following the recently discovered biomineralization principles. Mesocrystalline chamber walls in both models are therefore most likely created by intravesicular accumulation of pre-formed liquid amorphous mineral phase deposited and crystallized within the extracellular organic matrix enclosed in a biologically controlled privileged space by active pseudopodial structures. Both calcification pathways evolved independently in the Paleozoic and are well conserved in two clades that represent different chamber formation modes.