A cerebellar substrate for cognition evolved multiple times independently in mammals

  1. Jeroen B Smaers  Is a corresponding author
  2. Alan H Turner
  3. Aida Gómez-Robles
  4. Chet C Sherwood
  1. Stony Brook University, United States
  2. University College London, United Kingdom
  3. The George Washington University, United States

Abstract

Given that complex behavior evolved multiple times independently in different lineages, a crucial question is whether these independent evolutionary events coincided with modifications to common neural systems. To test this question in mammals, we investigate the lateral cerebellum, a neurobiological system that is novel to mammals, and is associated with higher cognitive functions. We map the evolutionary diversification of the mammalian cerebellum and find that relative volumetric changes of the lateral cerebellar hemispheres (independent of cerebellar size) are correlated with measures of domain-general cognition in primates, and are characterized by a combination of parallel and convergent shifts towards similar levels of expansion in distantly related mammalian lineages. Results suggest that multiple independent evolutionary occurrences of increased behavioral complexity in mammals may at least partly be explained by selection on a common neural system, the cerebellum, which may have been subject to multiple independent neurodevelopmental remodeling events during mammalian evolution.

Data availability

The brain data and the phylogeny that were used in the analyses are available as source data files (Figure 2 - source data 1, and Figure 3 - source data 1). Behavioral data for primates is available from Figure 2 Deaner RO, Van Schaik CP, Johnson V. 2006. Do some taxa have better domain-general cognition than others? A meta-analysis of nonhuman primate studies. Evolutionary Psychology 4: 149-196.

Article and author information

Author details

  1. Jeroen B Smaers

    Department of Anthropology, Stony Brook University, Stony Brook, United States
    For correspondence
    jeroen.smaers@stonybrook.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1741-9839
  2. Alan H Turner

    Department of Anatomical Sciences, Stony Brook University, Stony Brook, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aida Gómez-Robles

    Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Chet C Sherwood

    Department of Anthropology, The George Washington University, Washington, DC, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wenner Gren Foundation (Grant 9209)

  • Jeroen B Smaers

James S. McDonnell Foundation (220020293)

  • Chet C Sherwood

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mike Paulin, University of Otago, New Zealand

Publication history

  1. Received: February 6, 2018
  2. Accepted: May 21, 2018
  3. Accepted Manuscript published: May 29, 2018 (version 1)
  4. Version of Record published: June 15, 2018 (version 2)

Copyright

© 2018, Smaers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,827
    Page views
  • 447
    Downloads
  • 32
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jeroen B Smaers
  2. Alan H Turner
  3. Aida Gómez-Robles
  4. Chet C Sherwood
(2018)
A cerebellar substrate for cognition evolved multiple times independently in mammals
eLife 7:e35696.
https://doi.org/10.7554/eLife.35696

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Sophie Pantalacci
    Insight

    The tooth shape of sharks and mice are regulated by a similar signaling center despite their teeth having very different geometries.

    1. Evolutionary Biology
    2. Neuroscience
    Elias T Lunsford et al.
    Research Article Updated

    Animals can evolve dramatic sensory functions in response to environmental constraints, but little is known about the neural mechanisms underlying these changes. The Mexican tetra, Astyanax mexicanus, is a leading model to study genetic, behavioral, and physiological evolution by comparing eyed surface populations and blind cave populations. We compared neurophysiological responses of posterior lateral line afferent neurons and motor neurons across A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity. These studies indicate differences in intrinsic afferent signaling and gain control across populations. Elevated endogenous afferent activity identified a lower response threshold in the lateral line of blind cavefish relative to surface fish leading to increased evoked potentials during hair cell deflection in cavefish. We next measured the effect of inhibitory corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We discovered that three independently derived cavefish populations have evolved persistent afferent activity during locomotion, suggesting for the first time that partial loss of function in the efferent system can be an evolutionary mechanism for neural adaptation of a vertebrate sensory system.