Assessing reliability in neuroimaging research through intra-class effect decomposition (ICED)

  1. Andreas M Brandmaier  Is a corresponding author
  2. Elisabeth Wenger
  3. Nils C Bodammer
  4. Simone Kühn
  5. Naftali Raz
  6. Ulman Lindenberger
  1. Max Planck Institute for Human Development, Germany
  2. University Clinic Hamburg-Eppendorf, Germany

Abstract

Magnetic resonance imaging has become an indispensable tool for studying associations between structural and functional properties of the brain and behavior in humans. However, generally recognized standards for assessing and reporting the reliability of these techniques are still lacking. Here, we introduce a new approach for assessing and reporting reliability, termed intra-class effect decomposition (ICED). ICED uses structural equation modeling of data from a repeated-measures design to decompose reliability into orthogonal sources of measurement error that are associated with different characteristics of the measurements, for example, session, day, or scanning site. This allows researchers to describe the magnitude of different error components, make inferences about error sources, and inform them in planning future studies. We apply ICED to published measurements of myelin content and resting state functional connectivity. These examples illustrate how longitudinal data can be leveraged separately or conjointly with cross-sectional data to obtain more precise estimates of reliability.

Data availability

The dataset on myelin water fraction measurements is freely available at https://osf.io/t68my/ and the link-wise resting state functional connectivity data is available at https://osf.io/8n24x/.

The following previously published data sets were used
    1. Arshad M
    2. Stanley J A
    3. Raz
    4. N
    (2018) Reliability of Myelin Water Fraction in ALIC
    Publicly available at Open Science Framework.

Article and author information

Author details

  1. Andreas M Brandmaier

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    For correspondence
    brandmaier@mpib-berlin.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8765-6982
  2. Elisabeth Wenger

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Nils C Bodammer

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Simone Kühn

    Clinic and Policlinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Naftali Raz

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Ulman Lindenberger

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01-AG011230)

  • Naftali Raz

Horizon 2020 Framework Programme (732592)

  • Andreas M Brandmaier
  • Simone Kühn
  • Ulman Lindenberger

Max-Planck-Gesellschaft (Open-access funding)

  • Andreas M Brandmaier
  • Elisabeth Wenger
  • Nils C Bodammer
  • Naftali Raz
  • Ulman Lindenberger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Brandmaier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,380
    views
  • 272
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andreas M Brandmaier
  2. Elisabeth Wenger
  3. Nils C Bodammer
  4. Simone Kühn
  5. Naftali Raz
  6. Ulman Lindenberger
(2018)
Assessing reliability in neuroimaging research through intra-class effect decomposition (ICED)
eLife 7:e35718.
https://doi.org/10.7554/eLife.35718

Share this article

https://doi.org/10.7554/eLife.35718

Further reading

    1. Cell Biology
    2. Neuroscience
    Anne Drougard, Eric H Ma ... John Andrew Pospisilik
    Research Article

    Chronic high-fat feeding triggers metabolic dysfunction including obesity, insulin resistance, and diabetes. How high-fat intake first triggers these pathophysiological states remains unknown. Here, we identify an acute microglial metabolic response that rapidly translates intake of high-fat diet (HFD) to a surprisingly beneficial effect on metabolism and spatial/learning memory. High-fat intake rapidly increases palmitate levels in cerebrospinal fluid and triggers a wave of microglial metabolic activation characterized by mitochondrial membrane activation and fission as well as metabolic skewing toward aerobic glycolysis. These effects are detectable throughout the brain and can be detected within as little as 12 hr of HFD exposure. In vivo, microglial ablation and conditional DRP1 deletion show that the microglial metabolic response is necessary for the acute effects of HFD. 13C-tracing experiments reveal that in addition to processing via β-oxidation, microglia shunt a substantial fraction of palmitate toward anaplerosis and re-release of bioenergetic carbons into the extracellular milieu in the form of lactate, glutamate, succinate, and intriguingly, the neuroprotective metabolite itaconate. Together, these data identify microglia as a critical nutrient regulatory node in the brain, metabolizing away harmful fatty acids and liberating the same carbons as alternate bioenergetic and protective substrates for surrounding cells. The data identify a surprisingly beneficial effect of short-term HFD on learning and memory.

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.