1. Neuroscience
Download icon

Assessing reliability in neuroimaging research through intra-class effect decomposition (ICED)

  1. Andreas M Brandmaier  Is a corresponding author
  2. Elisabeth Wenger
  3. Nils C Bodammer
  4. Simone Kühn
  5. Naftali Raz
  6. Ulman Lindenberger
  1. Max Planck Institute for Human Development, Germany
  2. University Clinic Hamburg-Eppendorf, Germany
Research Article
  • Cited 8
  • Views 1,270
  • Annotations
Cite this article as: eLife 2018;7:e35718 doi: 10.7554/eLife.35718

Abstract

Magnetic resonance imaging has become an indispensable tool for studying associations between structural and functional properties of the brain and behavior in humans. However, generally recognized standards for assessing and reporting the reliability of these techniques are still lacking. Here, we introduce a new approach for assessing and reporting reliability, termed intra-class effect decomposition (ICED). ICED uses structural equation modeling of data from a repeated-measures design to decompose reliability into orthogonal sources of measurement error that are associated with different characteristics of the measurements, for example, session, day, or scanning site. This allows researchers to describe the magnitude of different error components, make inferences about error sources, and inform them in planning future studies. We apply ICED to published measurements of myelin content and resting state functional connectivity. These examples illustrate how longitudinal data can be leveraged separately or conjointly with cross-sectional data to obtain more precise estimates of reliability.

Article and author information

Author details

  1. Andreas M Brandmaier

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    For correspondence
    brandmaier@mpib-berlin.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8765-6982
  2. Elisabeth Wenger

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Nils C Bodammer

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Simone Kühn

    Clinic and Policlinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Naftali Raz

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Ulman Lindenberger

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01-AG011230)

  • Naftali Raz

Horizon 2020 Framework Programme (732592)

  • Andreas M Brandmaier
  • Simone Kühn
  • Ulman Lindenberger

Max-Planck-Gesellschaft (Open-access funding)

  • Andreas M Brandmaier
  • Elisabeth Wenger
  • Nils C Bodammer
  • Naftali Raz
  • Ulman Lindenberger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Heidi Johansen-Berg, University of Oxford, United Kingdom

Publication history

  1. Received: February 6, 2018
  2. Accepted: July 1, 2018
  3. Accepted Manuscript published: July 2, 2018 (version 1)
  4. Version of Record published: July 13, 2018 (version 2)

Copyright

© 2018, Brandmaier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,270
    Page views
  • 157
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Lihong Zhan et al.
    Research Article Updated

    Microglia are the resident myeloid cells in the central nervous system (CNS). The majority of microglia rely on CSF1R signaling for survival. However, a small subset of microglia in mouse brains can survive without CSF1R signaling and reestablish the microglial homeostatic population after CSF1R signaling returns. Using single-cell transcriptomic analysis, we characterized the heterogeneous microglial populations under CSF1R inhibition, including microglia with reduced homeostatic markers and elevated markers of inflammatory chemokines and proliferation. Importantly, MAC2/Lgals3 was upregulated under CSF1R inhibition, and shared striking similarities with microglial progenitors in the yolk sac and immature microglia in early embryos. Lineage-tracing studies revealed that these MAC2+ cells were of microglial origin. MAC2+ microglia were also present in non-treated adult mouse brains and exhibited immature transcriptomic signatures indistinguishable from those that survived CSF1R inhibition, supporting the notion that MAC2+ progenitor-like cells are present among adult microglia.

    1. Developmental Biology
    2. Neuroscience
    Yasmine Cantaut-Belarif et al.
    Research Article Updated

    The cerebrospinal fluid (CSF) contains an extracellular thread conserved in vertebrates, the Reissner fiber, which controls body axis morphogenesis in the zebrafish embryo. Yet, the signaling cascade originating from this fiber to ensure body axis straightening is not understood. Here, we explore the functional link between the Reissner fiber and undifferentiated spinal neurons contacting the CSF (CSF-cNs). First, we show that the Reissner fiber is required in vivo for the expression of urp2, a neuropeptide expressed in CSF-cNs. We show that the Reissner fiber is also required for embryonic calcium transients in these spinal neurons. Finally, we study how local adrenergic activation can substitute for the Reissner fiber-signaling pathway to CSF-cNs and rescue body axis morphogenesis. Our results show that the Reissner fiber acts on CSF-cNs and thereby contributes to establish body axis morphogenesis, and suggest it does so by controlling the availability of a chemical signal in the CSF.