Assessing reliability in neuroimaging research through intra-class effect decomposition (ICED)

  1. Andreas M Brandmaier  Is a corresponding author
  2. Elisabeth Wenger
  3. Nils C Bodammer
  4. Simone Kühn
  5. Naftali Raz
  6. Ulman Lindenberger
  1. Max Planck Institute for Human Development, Germany
  2. University Clinic Hamburg-Eppendorf, Germany

Abstract

Magnetic resonance imaging has become an indispensable tool for studying associations between structural and functional properties of the brain and behavior in humans. However, generally recognized standards for assessing and reporting the reliability of these techniques are still lacking. Here, we introduce a new approach for assessing and reporting reliability, termed intra-class effect decomposition (ICED). ICED uses structural equation modeling of data from a repeated-measures design to decompose reliability into orthogonal sources of measurement error that are associated with different characteristics of the measurements, for example, session, day, or scanning site. This allows researchers to describe the magnitude of different error components, make inferences about error sources, and inform them in planning future studies. We apply ICED to published measurements of myelin content and resting state functional connectivity. These examples illustrate how longitudinal data can be leveraged separately or conjointly with cross-sectional data to obtain more precise estimates of reliability.

Data availability

The dataset on myelin water fraction measurements is freely available at https://osf.io/t68my/ and the link-wise resting state functional connectivity data is available at https://osf.io/8n24x/.

The following previously published data sets were used
    1. Arshad M
    2. Stanley J A
    3. Raz
    4. N
    (2018) Reliability of Myelin Water Fraction in ALIC
    Publicly available at Open Science Framework.

Article and author information

Author details

  1. Andreas M Brandmaier

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    For correspondence
    brandmaier@mpib-berlin.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8765-6982
  2. Elisabeth Wenger

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Nils C Bodammer

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Simone Kühn

    Clinic and Policlinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Naftali Raz

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Ulman Lindenberger

    Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01-AG011230)

  • Naftali Raz

Horizon 2020 Framework Programme (732592)

  • Andreas M Brandmaier
  • Simone Kühn
  • Ulman Lindenberger

Max-Planck-Gesellschaft (Open-access funding)

  • Andreas M Brandmaier
  • Elisabeth Wenger
  • Nils C Bodammer
  • Naftali Raz
  • Ulman Lindenberger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Heidi Johansen-Berg, University of Oxford, United Kingdom

Publication history

  1. Received: February 6, 2018
  2. Accepted: July 1, 2018
  3. Accepted Manuscript published: July 2, 2018 (version 1)
  4. Version of Record published: July 13, 2018 (version 2)

Copyright

© 2018, Brandmaier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,956
    Page views
  • 233
    Downloads
  • 28
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andreas M Brandmaier
  2. Elisabeth Wenger
  3. Nils C Bodammer
  4. Simone Kühn
  5. Naftali Raz
  6. Ulman Lindenberger
(2018)
Assessing reliability in neuroimaging research through intra-class effect decomposition (ICED)
eLife 7:e35718.
https://doi.org/10.7554/eLife.35718
  1. Further reading

Further reading

    1. Neuroscience
    Maria Cecilia Martinez, Camila Lidia Zold ... Mariano Andrés Belluscio
    Research Article

    The automatic initiation of actions can be highly functional. But occasionally these actions cannot be withheld and are released at inappropriate times, impulsively. Striatal activity has been shown to participate in the timing of action sequence initiation and it has been linked to impulsivity. Using a self-initiated task, we trained adult male rats to withhold a rewarded action sequence until a waiting time interval has elapsed. By analyzing neuronal activity we show that the striatal response preceding the initiation of the learned sequence is strongly modulated by the time subjects wait before eliciting the sequence. Interestingly, the modulation is steeper in adolescent rats, which show a strong prevalence of impulsive responses compared to adults. We hypothesize this anticipatory striatal activity reflects the animals’ subjective reward expectation, based on the elapsed waiting time, while the steeper waiting modulation in adolescence reflects age-related differences in temporal discounting, internal urgency states, or explore–exploit balance.

    1. Computational and Systems Biology
    2. Neuroscience
    Sergio Oscar Verduzco-Flores, Erik De Schutter
    Research Article Updated

    How dynamic interactions between nervous system regions in mammals performs online motor control remains an unsolved problem. In this paper, we show that feedback control is a simple, yet powerful way to understand the neural dynamics of sensorimotor control. We make our case using a minimal model comprising spinal cord, sensory and motor cortex, coupled by long connections that are plastic. It succeeds in learning how to perform reaching movements of a planar arm with 6 muscles in several directions from scratch. The model satisfies biological plausibility constraints, like neural implementation, transmission delays, local synaptic learning and continuous online learning. Using differential Hebbian plasticity the model can go from motor babbling to reaching arbitrary targets in less than 10 min of in silico time. Moreover, independently of the learning mechanism, properly configured feedback control has many emergent properties: neural populations in motor cortex show directional tuning and oscillatory dynamics, the spinal cord creates convergent force fields that add linearly, and movements are ataxic (as in a motor system without a cerebellum).