Oligomerization of a molecular chaperone modulates its activity

  1. Tomohide Saio  Is a corresponding author
  2. Soichiro Kawagoe
  3. Koichiro Ishimori
  4. Charalampos G Kalodimos  Is a corresponding author
  1. Hokkaido University, Japan
  2. St Jude Children's Research Hospital, United States

Abstract

Molecular chaperones alter the folding properties of cellular proteins via mechanisms that are not well understood. Here we show that Trigger Factor (TF), an ATP-independent chaperone, exerts strikingly contrasting effects on the folding of non-native proteins as it transitions between a monomeric and a dimeric state. We used NMR spectroscopy to determine the atomic resolution structure of the 100-kDa dimeric TF. The structural data show that some of the substrate-binding sites are buried in the dimeric interface, explaining the lower affinity for protein substrates of the dimeric compared to the monomeric TF. Surprisingly, the dimeric TF associates faster with proteins and it exhibits stronger anti-aggregation and holdase activity than the monomeric TF. The structural data show that the dimer assembles in a way that substrate-binding sites in the two subunits form a large contiguous surface inside a cavity, thus accounting for the observed accelerated association with unfolded proteins. Our results demonstrate how the activity of a chaperone can be modulated to provide distinct functional outcomes in the cell.

Data availability

Atomic coordinates for the TF dimer structure have been deposited in the Protein Data Bank (ID 6D6S)

Article and author information

Author details

  1. Tomohide Saio

    Department of Chemistry, Hokkaido University, Hokkaido, Japan
    For correspondence
    saio@sci.hokudai.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  2. Soichiro Kawagoe

    Graduate School of Chemical Sciences and Engineering, Hokkaido University, Hokkaido, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Koichiro Ishimori

    Department of Chemistry, Hokkaido University, Hokkaido, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Charalampos G Kalodimos

    Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
    For correspondence
    babis.kalodimos@stjude.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6354-2796

Funding

National Institute of General Medical Sciences (GM122462)

  • Charalampos G Kalodimos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Saio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,765
    views
  • 588
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tomohide Saio
  2. Soichiro Kawagoe
  3. Koichiro Ishimori
  4. Charalampos G Kalodimos
(2018)
Oligomerization of a molecular chaperone modulates its activity
eLife 7:e35731.
https://doi.org/10.7554/eLife.35731

Share this article

https://doi.org/10.7554/eLife.35731

Further reading

    1. Structural Biology and Molecular Biophysics
    Bradley P Clarke, Alexia E Angelos ... Yi Ren
    Research Article

    In eukaryotes, RNAs transcribed by RNA Pol II are modified at the 5′ end with a 7-methylguanosine (m7G) cap, which is recognized by the nuclear cap binding complex (CBC). The CBC plays multiple important roles in mRNA metabolism, including transcription, splicing, polyadenylation, and export. It promotes mRNA export through direct interaction with a key mRNA export factor, ALYREF, which in turn links the TRanscription and EXport (TREX) complex to the 5′ end of mRNA. However, the molecular mechanism for CBC-mediated recruitment of the mRNA export machinery is not well understood. Here, we present the first structure of the CBC in complex with an mRNA export factor, ALYREF. The cryo-EM structure of CBC-ALYREF reveals that the RRM domain of ALYREF makes direct contact with both the NCBP1 and NCBP2 subunits of the CBC. Comparing CBC-ALYREF with other cellular complexes containing CBC and/or ALYREF components provides insights into the coordinated events during mRNA transcription, splicing, and export.

    1. Structural Biology and Molecular Biophysics
    Julia Belyaeva, Matthias Elgeti
    Review Article

    Under physiological conditions, proteins continuously undergo structural fluctuations on different timescales. Some conformations are only sparsely populated, but still play a key role in protein function. Thus, meaningful structure–function frameworks must include structural ensembles rather than only the most populated protein conformations. To detail protein plasticity, modern structural biology combines complementary experimental and computational approaches. In this review, we survey available computational approaches that integrate sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling techniques to derive all-atom structural models of rare protein conformations. We also propose strategies to increase the reliability and improve efficiency using deep learning approaches, thus advancing the field of integrative structural biology.