Oligomerization of a molecular chaperone modulates its activity

  1. Tomohide Saio  Is a corresponding author
  2. Soichiro Kawagoe
  3. Koichiro Ishimori
  4. Charalampos G Kalodimos  Is a corresponding author
  1. Hokkaido University, Japan
  2. St Jude Children's Research Hospital, United States

Abstract

Molecular chaperones alter the folding properties of cellular proteins via mechanisms that are not well understood. Here we show that Trigger Factor (TF), an ATP-independent chaperone, exerts strikingly contrasting effects on the folding of non-native proteins as it transitions between a monomeric and a dimeric state. We used NMR spectroscopy to determine the atomic resolution structure of the 100-kDa dimeric TF. The structural data show that some of the substrate-binding sites are buried in the dimeric interface, explaining the lower affinity for protein substrates of the dimeric compared to the monomeric TF. Surprisingly, the dimeric TF associates faster with proteins and it exhibits stronger anti-aggregation and holdase activity than the monomeric TF. The structural data show that the dimer assembles in a way that substrate-binding sites in the two subunits form a large contiguous surface inside a cavity, thus accounting for the observed accelerated association with unfolded proteins. Our results demonstrate how the activity of a chaperone can be modulated to provide distinct functional outcomes in the cell.

Data availability

Atomic coordinates for the TF dimer structure have been deposited in the Protein Data Bank (ID 6D6S)

Article and author information

Author details

  1. Tomohide Saio

    Department of Chemistry, Hokkaido University, Hokkaido, Japan
    For correspondence
    saio@sci.hokudai.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  2. Soichiro Kawagoe

    Graduate School of Chemical Sciences and Engineering, Hokkaido University, Hokkaido, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Koichiro Ishimori

    Department of Chemistry, Hokkaido University, Hokkaido, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Charalampos G Kalodimos

    Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
    For correspondence
    babis.kalodimos@stjude.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6354-2796

Funding

National Institute of General Medical Sciences (GM122462)

  • Charalampos G Kalodimos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Saio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,785
    views
  • 590
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tomohide Saio
  2. Soichiro Kawagoe
  3. Koichiro Ishimori
  4. Charalampos G Kalodimos
(2018)
Oligomerization of a molecular chaperone modulates its activity
eLife 7:e35731.
https://doi.org/10.7554/eLife.35731

Share this article

https://doi.org/10.7554/eLife.35731

Further reading

    1. Structural Biology and Molecular Biophysics
    Werner Treptow, Yichen Liu ... Benoit Roux
    Research Article

    Many voltage-gated potassium (Kv) channels display a time-dependent phenomenon called C-type inactivation, whereby prolonged activation by voltage leads to the inhibition of ionic conduction, a process that involves a conformational change at the selectivity filter toward a non-conductive state. Recently, a high-resolution structure of a strongly inactivated triple-mutant channel kv1.2-kv2.1-3m revealed a novel conformation of the selectivity filter that is dilated at its outer end, distinct from the well-characterized conductive state. While the experimental structure was interpreted as the elusive non-conductive state, our molecular dynamics simulations and electrophysiological measurements show that the dilated filter of kv1.2-kv2.1-3m is conductive and, as such, cannot completely account for the inactivation of the channel observed in the structural experiments. The simulation shows that an additional conformational change, implicating isoleucine residues at position 398 along the pore lining segment S6, is required to effectively block ion conduction. The I398 residues from the four subunits act as a state-dependent hydrophobic gate located immediately beneath the selectivity filter. By mutating I398 to Asparagine, ion permeation can be resumed in the kv1.2-kv2.1-3m channel, which was not a reversion C-type inactivation, since AgTxII fails to block the ionic permeation of kv1.2-kv2.1-3m_I398N. As a critical piece of the C-type inactivation machinery, this structural feature is the potential target of a broad class of QA blockers and negatively charged activators thus opening new research directions towards the development of drugs that specifically modulate gating-states of Kv channels.

    1. Structural Biology and Molecular Biophysics
    Surbhi Dhingra, Prachi M Chopade ... Janesh Kumar
    Research Article

    Kainate receptors are key modulators of synaptic transmission and plasticity in the central nervous system. Different kainate receptor isoforms with distinct spatiotemporal expressions have been identified in the brain. The GluK1-1 splice variant receptors, which are abundant in the adult brain, have an extra fifteen amino acids inserted in the amino-terminal domain (ATD) of the receptor resulting from alternative splicing of exon 9. However, the functional implications of this post-transcriptional modification are not yet clear. We employed a multi-pronged approach using cryogenic electron microscopy, electrophysiology, and other biophysical and biochemical tools to understand the structural and functional impact of this splice insert in the extracellular domain of GluK1 receptors. Our study reveals that the splice insert alters the key gating properties of GluK1 receptors and their modulation by the cognate auxiliary Neuropilin and tolloid-like (Neto) proteins 1 and 2. Mutational analysis identified the role of crucial splice residues that influence receptor properties and their modulation. Furthermore, the cryoEM structure of the variant shows that the presence of exon 9 in GluK1 does not affect the receptor architecture or domain arrangement in the desensitized state. Our study thus provides the first detailed structural and functional characterization of GluK1-1a receptors, highlighting the role of the splice insert in modulating receptor properties and their modulation.