Oligomerization of a molecular chaperone modulates its activity

  1. Tomohide Saio  Is a corresponding author
  2. Soichiro Kawagoe
  3. Koichiro Ishimori
  4. Charalampos G Kalodimos  Is a corresponding author
  1. Hokkaido University, Japan
  2. St Jude Children's Research Hospital, United States

Abstract

Molecular chaperones alter the folding properties of cellular proteins via mechanisms that are not well understood. Here we show that Trigger Factor (TF), an ATP-independent chaperone, exerts strikingly contrasting effects on the folding of non-native proteins as it transitions between a monomeric and a dimeric state. We used NMR spectroscopy to determine the atomic resolution structure of the 100-kDa dimeric TF. The structural data show that some of the substrate-binding sites are buried in the dimeric interface, explaining the lower affinity for protein substrates of the dimeric compared to the monomeric TF. Surprisingly, the dimeric TF associates faster with proteins and it exhibits stronger anti-aggregation and holdase activity than the monomeric TF. The structural data show that the dimer assembles in a way that substrate-binding sites in the two subunits form a large contiguous surface inside a cavity, thus accounting for the observed accelerated association with unfolded proteins. Our results demonstrate how the activity of a chaperone can be modulated to provide distinct functional outcomes in the cell.

Data availability

Atomic coordinates for the TF dimer structure have been deposited in the Protein Data Bank (ID 6D6S)

Article and author information

Author details

  1. Tomohide Saio

    Department of Chemistry, Hokkaido University, Hokkaido, Japan
    For correspondence
    saio@sci.hokudai.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
  2. Soichiro Kawagoe

    Graduate School of Chemical Sciences and Engineering, Hokkaido University, Hokkaido, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Koichiro Ishimori

    Department of Chemistry, Hokkaido University, Hokkaido, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Charalampos G Kalodimos

    Department of Structural Biology, St Jude Children's Research Hospital, Memphis, United States
    For correspondence
    babis.kalodimos@stjude.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6354-2796

Funding

National Institute of General Medical Sciences (GM122462)

  • Charalampos G Kalodimos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lewis E Kay, University of Toronto, Canada

Version history

  1. Received: February 7, 2018
  2. Accepted: April 30, 2018
  3. Accepted Manuscript published: May 1, 2018 (version 1)
  4. Version of Record published: June 5, 2018 (version 2)

Copyright

© 2018, Saio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,662
    views
  • 579
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tomohide Saio
  2. Soichiro Kawagoe
  3. Koichiro Ishimori
  4. Charalampos G Kalodimos
(2018)
Oligomerization of a molecular chaperone modulates its activity
eLife 7:e35731.
https://doi.org/10.7554/eLife.35731

Share this article

https://doi.org/10.7554/eLife.35731

Further reading

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.