A synthetic peptide that prevents cAMP regulation in mammalian Hyperpolarization-activated Cyclic Nucleotide-regulated (HCN) channels

  1. Andrea Saponaro
  2. Francesca Cantini
  3. Alessandro Porro
  4. Annalisa Bucchi
  5. Dario DiFrancesco
  6. Vincenzo Maione
  7. Chiara Donadoni
  8. Bianca Introini
  9. Pietro Mesirca
  10. Matteo Elia Mangoni
  11. Gerhard Thiel
  12. Lucia Banci
  13. Bina Santoro
  14. Anna Moroni  Is a corresponding author
  1. University of Milan, Italy
  2. University of Florence, Italy
  3. Université de Montpellier, CNRS, INSERM, France
  4. Technische Universität Darmstadt, Germany
  5. Columbia University, United States

Abstract

Binding of TRIP8b to the cyclic nucleotide binding domain (CNBD) of mammalian HCN channels prevents their regulation by cAMP. Since TRIP8b is expressed exclusively in the brain, we envisage that it can be used for orthogonal control of HCN channels beyond the central nervous system. To this end, we have identified by rational design a 40-aa long peptide (TRIP8bnano) that recapitulates affinity and gating effects of TRIP8b in HCN isoforms (human hHCN1, mHCn2, rbHCN4) and in the cardiac current If in rabbit and mouse sinoatrial node cardiomyocytes. Guided by a NMR-derived structural model that identifies the key molecular interactions between TRIP8bnano and HCN CNBD, we further designed a cell-penetrating peptide (TAT-TRIP8bnano) which successfully prevented b-adrenergic activation of mouse If leaving the stimulation of the L-type calcium current (ICaL) unaffected. TRIP8bnano represents a novel approach to selectively control HCN activation, which yields the promise of a more targeted pharmacology compared to pore blockers.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 3.

Article and author information

Author details

  1. Andrea Saponaro

    Department of Biosciences, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5035-5174
  2. Francesca Cantini

    Centro Risonanze Magnetiche (CERM), University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Alessandro Porro

    Department of Biosciences, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Annalisa Bucchi

    Department of Biosciences, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Dario DiFrancesco

    Department of Biosciences, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Vincenzo Maione

    Centro Risonanze Magnetiche (CERM), University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8229-6612
  7. Chiara Donadoni

    Department of Biosciences, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Bianca Introini

    Department of Biosciences, University of Milan, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Pietro Mesirca

    Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Matteo Elia Mangoni

    Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8892-3373
  11. Gerhard Thiel

    Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Lucia Banci

    Centro Risonanze Magnetiche (CERM), University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  13. Bina Santoro

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Anna Moroni

    Department of Biosciences, University of Milan, Milan, Italy
    For correspondence
    anna.moroni@unimi.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1860-406X

Funding

Fondazione Cariplo

  • Anna Moroni

National Institutes of Health

  • Anna Moroni

H2020 European Research Council

  • Anna Moroni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experiments on rabbit SAN cells were performed using left-over cells obtained during experiments approved by the Animal Welfare Body of the University of Milan and by the Italian Ministry of Health (license n.1127/2015-PR). Animal procedures were conformed to the guidelines of the care and use of laboratory animals established by Italian and European Directives (D. Lgs no 2014/26, 2010/63/UE).Mouse primary pacemaker cells were isolated from adult C5B6/J mice as previously described (Mangoni and Nargeot, Cardiovasc Res 2001), in accordance with the Guide for the Care and Use of Laboratory Animals (eighth edition, 2011), published by the US National Institute of Health and European directives (2010/63/EU). The protocol was approved by the ethical committee of the University of Montpellier and the French Ministry of Agriculture (protocol N{degree sign}: 2017010310594939).

Copyright

© 2018, Saponaro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,710
    views
  • 389
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Saponaro
  2. Francesca Cantini
  3. Alessandro Porro
  4. Annalisa Bucchi
  5. Dario DiFrancesco
  6. Vincenzo Maione
  7. Chiara Donadoni
  8. Bianca Introini
  9. Pietro Mesirca
  10. Matteo Elia Mangoni
  11. Gerhard Thiel
  12. Lucia Banci
  13. Bina Santoro
  14. Anna Moroni
(2018)
A synthetic peptide that prevents cAMP regulation in mammalian Hyperpolarization-activated Cyclic Nucleotide-regulated (HCN) channels
eLife 7:e35753.
https://doi.org/10.7554/eLife.35753

Share this article

https://doi.org/10.7554/eLife.35753

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Cristina Paissoni, Sarita Puri ... Carlo Camilloni
    Research Article

    Both immunoglobulin light-chain (LC) amyloidosis (AL) and multiple myeloma (MM) share the overproduction of a clonal LC. However, while LCs in MM remain soluble in circulation, AL LCs misfold into toxic-soluble species and amyloid fibrils that accumulate in organs, leading to distinct clinical manifestations. The significant sequence variability of LCs has hindered the understanding of the mechanisms driving LC aggregation. Nevertheless, emerging biochemical properties, including dimer stability, conformational dynamics, and proteolysis susceptibility, distinguish AL LCs from those in MM under native conditions. This study aimed to identify a2 conformational fingerprint distinguishing AL from MM LCs. Using small-angle X-ray scattering (SAXS) under native conditions, we analyzed four AL and two MM LCs. We observed that AL LCs exhibited a slightly larger radius of gyration and greater deviations from X-ray crystallography-determined or predicted structures, reflecting enhanced conformational dynamics. SAXS data, integrated with molecular dynamics simulations, revealed a conformational ensemble where LCs adopt multiple states, with variable and constant domains either bent or straight. AL LCs displayed a distinct, low-populated, straight conformation (termed H state), which maximized solvent accessibility at the interface between constant and variable domains. Hydrogen-deuterium exchange mass spectrometry experimentally validated this H state. These findings reconcile diverse experimental observations and provide a precise structural target for future drug design efforts.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.