A promoter interaction map for cardiovascular disease genetics
Abstract
Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs), however most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression. Using the CM PCHi-C map, we linked 1,999 CVD-associated SNPs to 347 target genes. Remarkably, more than 90% of SNP-target gene interactions did not involve the nearest gene, while 40% of SNPs interacted with at least two genes, demonstrating the importance of considering long-range chromatin interactions when interpreting functional targets of disease loci.
Data availability
Raw and processed sequencing data are provided at ArrayExpress through accession numbers E-MTAB-6014 (Hi-C) and E-MTAB-6013 (RNA-seq).
-
Roadmap Epigenome Project-RV-H3K4me1E105-H3K4me1.narrowPeak.gz.
-
Roadmap Epigenome Project-RV-H3K27acE105-H3K27ac.narrowPeak.gz.
-
Roadmap Epigenome Project-RV-H3K27me3E105-H3K27me3.narrowPeak.gz.
-
Roadmap Epigenome Project-RA-H3K4me1E104-H3K4me1.narrowPeak.gz.
-
Roadmap Epigenome Project-RA-H3K27acE104-H3K27ac.narrowPeak.gz.
-
Roadmap Epigenome Project-RA-H3K27me3E104-H3K27me3.narrowPeak.gz.
Article and author information
Author details
Funding
National Institutes of Health (HL123857)
- Marcelo A Nóbrega
National Institutes of Health (HL119967)
- Marcelo A Nóbrega
National Institutes of Health (HL118758)
- Marcelo A Nóbrega
National Institutes of Health (HL128075)
- Elizabeth M McNally
- Marcelo A Nóbrega
National Institutes of Health (T32GMOO7197)
- Lindsey E Montefiori
American Heart Association (17PRE33410726)
- Lindsey E Montefiori
National Institutes of Health (HL137307-01)
- Lindsey E Montefiori
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2018, Montefiori et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 10,705
- views
-
- 1,273
- downloads
-
- 123
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.
-
- Chromosomes and Gene Expression
- Genetics and Genomics
A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.