Trajectories of childhood immune development and respiratory health relevant to asthma and allergy

  1. Howard HF Tang  Is a corresponding author
  2. Shu Mei Teo
  3. Danielle CM Belgrave
  4. Michael D Evans
  5. Daniel J Jackson
  6. Marta Brozynska
  7. Merci MH Kusel
  8. Sebastian L Johnston
  9. James E Gern
  10. Robert F Lemanske
  11. Angela Simpson
  12. Adnan Custovic
  13. Peter D Sly
  14. Patrick G Holt
  15. Kathryn E Holt
  16. Michael Inouye  Is a corresponding author
  1. Baker Heart and Diabetes Institute, Australia
  2. Imperial College London, United Kingdom
  3. University of Wisconsin School of Medicine and Public Health, United States
  4. University of Western Australia, Australia
  5. University of Manchester, United Kingdom
  6. The University of Melbourne, Australia
  7. University of Cambridge, United Kingdom

Abstract

Events in early life contribute to subsequent risk of asthma; however, the causes and trajectories of childhood wheeze are heterogeneous and do not always result in asthma. Similarly, not all atopic individuals develop wheeze, and vice versa. The reasons for these differences are unclear. Using unsupervised model-based cluster analysis, we identified latent clusters within a prospective birth cohort with deep immunological and respiratory phenotyping. We characterised each cluster in terms of immunological profile and disease risk, and replicated our results in external cohorts from the UK and USA. We discovered three distinct trajectories, one of which is a high-risk 'atopic' cluster with increased propensity for allergic diseases throughout childhood. Atopy contributes varyingly to later wheeze depending on cluster membership. Our findings demonstrate the utility of unsupervised analysis in elucidating heterogeneity in asthma pathogenesis and provide a foundation for improving management and prevention of childhood asthma.

Data availability

This study utilises extensive data from human subjects, specifically paediatric cohorts, for which eLife's policies recognise that there can be strong reasons to restrict access. For each of the cohorts involved in our study (CAS, COAST, MAAS), parents were consented on the use of biomedical data for allergy and asthma research, but not for the open sharing of their or their children's data. Studies were run in the late 1990s and early 2000s and we do not have ethics permission to attempt to recontact families to seek consent. Importantly, we note that key data features could risk re-identification of subjects (e.g. demographic data from small communities).However, we have provided public data at the summary level which can be used for subsequent studies, such as replication and meta-analysis. This is standard practice in sensitive data settings, such as genome-wide association studies. These data have been uploaded as Excel spreadsheets to FigShare for ease of data extraction:Supplementary Table 4 https://figshare.com/articles/Supplementary_File_1_1/6934052Supplementary Table 7 https://figshare.com/articles/Supplementary_File_1_2/6934055

Article and author information

Author details

  1. Howard HF Tang

    Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
    For correspondence
    Howard.Tang@baker.edu.au
    Competing interests
    The authors declare that no competing interests exist.
  2. Shu Mei Teo

    Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Danielle CM Belgrave

    Department of Paediatrics, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael D Evans

    University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7449-3993
  5. Daniel J Jackson

    University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Marta Brozynska

    Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Merci MH Kusel

    Telethon Kids Institute, University of Western Australia, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Sebastian L Johnston

    Airway Disease Infection Section, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. James E Gern

    University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Robert F Lemanske

    University of Wisconsin School of Medicine and Public Health, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Angela Simpson

    Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Adnan Custovic

    Department of Paediatrics, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5218-7071
  13. Peter D Sly

    Telethon Kids Institute, University of Western Australia, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Patrick G Holt

    Telethon Kids Institute, University of Western Australia, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Kathryn E Holt

    Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  16. Michael Inouye

    Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    mi336@medschl.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9413-6520

Funding

National Health and Medical Research Council (1049539)

  • Michael Inouye

National Health and Medical Research Council (PhD Scholarship)

  • Howard HF Tang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Ethics approval and consent requirements for each cohort were met as follows: The CAS study was approved by the ethics committees of the King Edward Memorial and Princess Margaret Hospitals in Western Australia; fully informed parental consent was obtained for all subjects. The COAST study was approved by the Human Subjects Committee of the University of Wisconsin. The MAAS study was approved by a Manchester Local Research Ethics Committee (ERP/94/032; SOU/00/258; 03/SM/400; Study registration ISRCTN72673620); fully informed parental consent was obtained for all subjects across all cohorts.

Reviewing Editor

  1. M Dawn Teare, University of Sheffield, United Kingdom

Publication history

  1. Received: February 12, 2018
  2. Accepted: October 5, 2018
  3. Accepted Manuscript published: October 15, 2018 (version 1)
  4. Version of Record published: November 7, 2018 (version 2)

Copyright

© 2018, Tang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,843
    Page views
  • 268
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Howard HF Tang
  2. Shu Mei Teo
  3. Danielle CM Belgrave
  4. Michael D Evans
  5. Daniel J Jackson
  6. Marta Brozynska
  7. Merci MH Kusel
  8. Sebastian L Johnston
  9. James E Gern
  10. Robert F Lemanske
  11. Angela Simpson
  12. Adnan Custovic
  13. Peter D Sly
  14. Patrick G Holt
  15. Kathryn E Holt
  16. Michael Inouye
(2018)
Trajectories of childhood immune development and respiratory health relevant to asthma and allergy
eLife 7:e35856.
https://doi.org/10.7554/eLife.35856

Further reading

    1. Computational and Systems Biology
    Valentina Baldazzi, Delphine Ropers ... Hidde de Jong
    Research Article

    Different strains of a microorganism growing in the same environment display a wide variety of growth rates and growth yields. We developed a coarse-grained model to test the hypothesis that different resource allocation strategies, corresponding to different compositions of the proteome, can account for the observed rate-yield variability. The model predictions were verified by means of a database of hundreds of published rate-yield and uptake-secretion phenotypes of Escherichia coli strains grown in standard laboratory conditions. We found a very good quantitative agreement between the range of predicted and observed growth rates, growth yields, and glucose uptake and acetate secretion rates. These results support the hypothesis that resource allocation is a major explanatory factor of the observed variability of growth rates and growth yields across different bacterial strains. An interesting prediction of our model, supported by the experimental data, is that high growth rates are not necessarily accompanied by low growth yields. The resource allocation strategies enabling high-rate, high-yield growth of E. coli lead to a higher saturation of enzymes and ribosomes, and thus to a more efficient utilization of proteomic resources. Our model thus contributes to a fundamental understanding of the quantitative relationship between rate and yield in E. coli and other microorganisms. It may also be useful for the rapid screening of strains in metabolic engineering and synthetic biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Kai J Sandbrink, Pranav Mamidanna ... Alexander Mathis
    Research Article

    Biological motor control is versatile, efficient, and depends on proprioceptive feedback. Muscles are flexible and undergo continuous changes, requiring distributed adaptive control mechanisms that continuously account for the body's state. The canonical role of proprioception is representing the body state. We hypothesize that the proprioceptive system could also be critical for high-level tasks such as action recognition. To test this theory, we pursued a task-driven modeling approach, which allowed us to isolate the study of proprioception. We generated a large synthetic dataset of human arm trajectories tracing characters of the Latin alphabet in 3D space, together with muscle activities obtained from a musculoskeletal model and model-based muscle spindle activity. Next, we compared two classes of tasks: trajectory decoding and action recognition, which allowed us to train hierarchical models to decode either the position and velocity of the end-effector of one's posture or the character (action) identity from the spindle firing patterns. We found that artificial neural networks could robustly solve both tasks, and the networks'units show tuning properties similar to neurons in the primate somatosensory cortex and the brainstem. Remarkably, we found uniformly distributed directional selective units only with the action-recognition-trained models and not the trajectory-decoding-trained models. This suggests that proprioceptive encoding is additionally associated with higher-level functions such as action recognition and therefore provides new, experimentally testable hypotheses of how proprioception aids in adaptive motor control.