Trajectories of childhood immune development and respiratory health relevant to asthma and allergy
Abstract
Events in early life contribute to subsequent risk of asthma; however, the causes and trajectories of childhood wheeze are heterogeneous and do not always result in asthma. Similarly, not all atopic individuals develop wheeze, and vice versa. The reasons for these differences are unclear. Using unsupervised model-based cluster analysis, we identified latent clusters within a prospective birth cohort with deep immunological and respiratory phenotyping. We characterised each cluster in terms of immunological profile and disease risk, and replicated our results in external cohorts from the UK and USA. We discovered three distinct trajectories, one of which is a high-risk 'atopic' cluster with increased propensity for allergic diseases throughout childhood. Atopy contributes varyingly to later wheeze depending on cluster membership. Our findings demonstrate the utility of unsupervised analysis in elucidating heterogeneity in asthma pathogenesis and provide a foundation for improving management and prevention of childhood asthma.
Data availability
This study utilises extensive data from human subjects, specifically paediatric cohorts, for which eLife's policies recognise that there can be strong reasons to restrict access. For each of the cohorts involved in our study (CAS, COAST, MAAS), parents were consented on the use of biomedical data for allergy and asthma research, but not for the open sharing of their or their children's data. Studies were run in the late 1990s and early 2000s and we do not have ethics permission to attempt to recontact families to seek consent. Importantly, we note that key data features could risk re-identification of subjects (e.g. demographic data from small communities).However, we have provided public data at the summary level which can be used for subsequent studies, such as replication and meta-analysis. This is standard practice in sensitive data settings, such as genome-wide association studies. These data have been uploaded as Excel spreadsheets to FigShare for ease of data extraction:Supplementary Table 4 https://figshare.com/articles/Supplementary_File_1_1/6934052Supplementary Table 7 https://figshare.com/articles/Supplementary_File_1_2/6934055
Article and author information
Author details
Funding
National Health and Medical Research Council (1049539)
- Michael Inouye
National Health and Medical Research Council (PhD Scholarship)
- Howard HF Tang
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Ethics approval and consent requirements for each cohort were met as follows: The CAS study was approved by the ethics committees of the King Edward Memorial and Princess Margaret Hospitals in Western Australia; fully informed parental consent was obtained for all subjects. The COAST study was approved by the Human Subjects Committee of the University of Wisconsin. The MAAS study was approved by a Manchester Local Research Ethics Committee (ERP/94/032; SOU/00/258; 03/SM/400; Study registration ISRCTN72673620); fully informed parental consent was obtained for all subjects across all cohorts.
Copyright
© 2018, Tang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,953
- views
-
- 292
- downloads
-
- 22
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Medicine
Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.
-
- Computational and Systems Biology
Measuring mitochondrial respiration in frozen tissue samples provides the first comprehensive atlas of how aging affects mitochondrial function in mice.