1. Cell Biology
  2. Developmental Biology
Download icon

Developmentally regulated H2Av buffering via dynamic sequestration to lipid droplets in Drosophila embryos

Research Article
  • Cited 11
  • Views 2,143
  • Annotations
Cite this article as: eLife 2018;7:e36021 doi: 10.7554/eLife.36021

Abstract

Regulating nuclear histone balance is essential for survival, yet in early Drosophila melanogaster embryos many regulatory strategies employed in somatic cells are unavailable. Previous work had suggested that lipid droplets (LDs) buffer nuclear accumulation of the histone variant H2Av. Here we elucidate the buffering mechanism and demonstrate that it is developmentally controlled. Using live imaging, we find that H2Av continuously exchanges between LDs. Our data suggest that the major driving force for H2Av accumulation in nuclei is H2Av abundance in the cytoplasm and that LD binding slows nuclear import kinetically, by limiting this cytoplasmic pool. Nuclear H2Av accumulation is indeed inversely regulated by overall buffering capacity. Histone exchange between LDs abruptly ceases during the midblastula transition, presumably to allow canonical regulatory mechanisms to take over. These findings provide a mechanistic basis for the emerging role of LDs as regulators of protein homeostasis and demonstrate that LDs can control developmental progression.

Article and author information

Author details

  1. Matthew Richard Johnson

    Department of Biology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Roxan Amanda Stephenson

    Department of Biology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sina Ghaemmaghami

    Department of Biology, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael Andreas Welte

    Department of Biology, University of Rochester, Rochester, United States
    For correspondence
    michael.welte@rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5741-4720

Funding

National Institutes of Health (RO1 GM102155)

  • Michael Andreas Welte

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Robert V Farese, Harvard T. H. Chan School of Public Health, United States

Publication history

  1. Received: February 16, 2018
  2. Accepted: July 24, 2018
  3. Accepted Manuscript published: July 25, 2018 (version 1)
  4. Version of Record published: August 13, 2018 (version 2)

Copyright

© 2018, Johnson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,143
    Page views
  • 339
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Developmental Biology
    Neta Erez et al.
    Research Article Updated

    A hallmark of aging is loss of differentiated cell identity. Aged Drosophila midgut differentiated enterocytes (ECs) lose their identity, impairing tissue homeostasis. To discover identity regulators, we performed an RNAi screen targeting ubiquitin-related genes in ECs. Seventeen genes were identified, including the deubiquitinase Non-stop (CG4166). Lineage tracing established that acute loss of Non-stop in young ECs phenocopies aged ECs at cellular and tissue levels. Proteomic analysis unveiled that Non-stop maintains identity as part of a Non-stop identity complex (NIC) containing E(y)2, Sgf11, Cp190, (Mod) mdg4, and Nup98. Non-stop ensured chromatin accessibility, maintaining the EC-gene signature, and protected NIC subunit stability. Upon aging, the levels of Non-stop and NIC subunits declined, distorting the unique organization of the EC nucleus. Maintaining youthful levels of Non-stop in wildtype aged ECs safeguards NIC subunits, nuclear organization, and suppressed aging phenotypes. Thus, Non-stop and NIC, supervise EC identity and protects from premature aging.

    1. Cell Biology
    2. Neuroscience
    Friederike Elisabeth Kohrs et al.
    Tools and Resources

    Rab GTPases are molecular switches that regulate membrane trafficking in all cells. Neurons have particular demands on membrane trafficking and express numerous Rab GTPases of unknown function. Here we report the generation and characterization of molecularly defined null mutants for all 26 rab genes in Drosophila. In flies, all rab genes are expressed in the nervous system where at least half exhibit particularly high levels compared to other tissues. Surprisingly, loss of any of these 13 nervous system-enriched Rabs yielded viable and fertile flies without obvious morphological defects. However, all 13 mutants differentially affected development when challenged with different temperatures, or neuronal function when challenged with continuous stimulation. We identified a synaptic maintenance defect following continuous stimulation for six mutants, including an autophagy-independent role of rab26. The complete mutant collection generated in this study provides a basis for further comprehensive studies of Rab GTPases during development and function in vivo.