Neuronal Plasticity: Genetic signatures of memories

Memorable positive and negative experiences produce different profiles of gene expression in the brain areas associated with long-term memory.
  1. Vivek Sagar  Is a corresponding author
  2. Thorsten Kahnt  Is a corresponding author
  1. Northwestern University, Feinberg School of Medicine, United States
  2. Northwestern University, Weinberg College of Arts and Sciences, United States

Try to recall your earliest memory. Chances are this experience took place a few decades ago. How did your brain register this event, and then keep a record of it over so many years? These fundamental questions have long been the focus of neuroscience research.

A memory is created when a significant signal is received from the environment and then activates groups of neurons in the brain. Next, genes called ‘immediate-early genes’ are activated in the neurons, and go on to produce a range of proteins that change the strength of the synapses that connect neurons with each other (Sheng and Greenberg, 1990; Kang and Schuman, 1996). It is this synaptic plasticity that drives how memories are created and stored (Martin et al., 2000). Immediate-early gene activation is used as a marker of when and where synaptic plasticity is taking place (Flavell and Greenberg, 2008; Minatohara et al., 2015). Yet, it is not known whether this genetic response includes any specific information about the environmental stimuli that triggered it (Okuno, 2011), or if it is the same regardless of the signal.

Now, in eLife, Ami Citri and colleagues from the Hebrew University of Jerusalem and the Canadian Institute for Advanced Research – including Diptendu Mukherjee, Bogna Marta Ignatowska-Jankowska and Eyal Itskovits as joint first authors – report that different experiences lead to different expression profiles of the immediate-early genes in various regions of brain that are involved in memory in mice (Mukherjee et al., 2018). This makes it possible to infer the type of experience that produced a given expression profile.

First, the mice were given either cocaine (a positive experience) or a substance that made them sick (a negative experience). A method called quantitative polymerase chain reaction (qPCR) was then used to measure the expression of each immediate-early gene in response to the experience. The analysis focused on five brain areas which react to memorable events and play a crucial role in long-term memory (Catani et al., 2013).

Based on these results, Mukherjee et al. selected five immediate-early genes for further analysis. They found that, across the different brain areas, the expression profiles of these five genes were unique for each experience (Figure 1). In fact, the patterns were so specific that it was possible to use them to predict with high accuracy which experience the mouse had gone through. This suggests that the activation profiles for these genes contain information about the specific experiences that an animal encountered.

Positive and negative events produce unique gene expression profiles for immediate-early genes in mice.

Two groups of mice are exposed to either a positive experience (left) or negative experience (right). This triggers the activation of five immediate-early genes (Arc, Egr2, Egr4, Fos and Fosb; different color triangles) in the neurons of brain regions that are involved in the formation of long-term memories. The level of expression of each gene is quantified using quantitative polymerase chain reaction (qPCR). The expression pattern of these five genes (bottom) is specific to the event experienced by the mice.

IMAGE CREDIT: Vivek Sagar and Thorsten Kahnt.

To confirm these results, further experiments were conducted in which mice were exposed to additional positive and negative experiences (such as being given sucrose or an electric shock). Again, each event was associated with a characteristic gene activation profile, and the specific experience could be predicted on the basis of gene expression patterns. Strikingly, positive experiences (e.g. cocaine and sucrose) produced gene expression profiles that were similar to each other across the five brain areas; so did the negative events. However, the profiles produced by negative and positive signals were different from each other. Moreover, it was still possible to discriminate between the patterns created by different types of positive (or negative) experiences.

In a final step, Mukherjee et al. used their decoding model to identify the smallest combination of genes and brain areas that was sufficient to predict individual experiences with high accuracy. This minimal subset contained only eight gene-brain area combinations, and was better at predicting experiences than any of the genes or brain regions in isolation.

The results of this study suggest that immediate-early genes are not merely indicators of synaptic plasticity. Rather, the expression profiles for these genes contain fairly specific information about the stimulus that created them. This is similar to what has been observed with patterns of neural activity (Howard et al., 2015). This specificity provides important insights into how to store the identity of an experience.

These experiments provide a solid foundation from which to explore the mechanisms related to the activation of immediate-early genes in greater detail. For example, we do not know whether the same processes will operate in regions of the brain that are not associated with memory. It also remains unclear if highly similar experiences would still produce distinguishable genetic signatures.

References

Article and author information

Author details

  1. Vivek Sagar

    Vivek Sagar is in the Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, United States

    For correspondence
    VivekSagar2016@u.northwestern.edu
    Competing interests
    No competing interests declared
  2. Thorsten Kahnt

    Thorsten Kahnt is in the Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, United States and the Department of Psychology, Northwestern University, Weinberg College of Arts and Sciences, Evanston, United States

    For correspondence
    thorsten.kahnt@northwestern.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3575-2670

Publication history

  1. Version of Record published: March 21, 2018 (version 1)

Copyright

© 2018, Sagar et al.

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,423
    views
  • 289
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vivek Sagar
  2. Thorsten Kahnt
(2018)
Neuronal Plasticity: Genetic signatures of memories
eLife 7:e36064.
https://doi.org/10.7554/eLife.36064
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Katarzyna Marta Zoltowska, Utpal Das ... Lucía Chávez-Gutiérrez
    Research Article

    Amyloid β (Aβ) peptides accumulating in the brain are proposed to trigger Alzheimer’s disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aβ42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aβ42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aβ, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aβ on γ-secretases. We show that human Aβ42 peptides, but neither murine Aβ42 nor human Aβ17–42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aβ42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aβ42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aβ toxicity in the context of γ-secretase-dependent homeostatic signaling.

    1. Neuroscience
    Nicholas GW Kennedy, Jessica C Lee ... Nathan M Holmes
    Research Article

    How is new information organized in memory? According to latent state theories, this is determined by the level of surprise, or prediction error, generated by the new information: a small prediction error leads to the updating of existing memory, large prediction error leads to encoding of a new memory. We tested this idea using a protocol in which rats were first conditioned to fear a stimulus paired with shock. The stimulus was then gradually extinguished by progressively reducing the shock intensity until the stimulus was presented alone. Consistent with latent state theories, this gradual extinction protocol (small prediction errors) was better than standard extinction (large prediction errors) in producing long-term suppression of fear responses, and the benefit of gradual extinction was due to updating of the conditioning memory with information about extinction. Thus, prediction error determines how new information is organized in memory, and latent state theories adequately describe the ways in which this occurs.