Reactivation of RNA metabolism underlies somatic restoration after adult reproductive diapause in C. elegans

Abstract

The mechanisms underlying biological aging are becoming recognized as therapeutic targets to delay the onset of multiple age-related morbidities. Even greater health benefits can potentially be achieved by halting or reversing age-associated changes. C. elegans restore their tissues and normal longevity upon exit from prolonged adult reproductive diapause, but the mechanisms underlying this phenomenon remain unknown. Here, we focused on the mechanisms controlling recovery from adult diapause. Here, we show that functional improvement of post-mitotic somatic tissues does not require germline signaling, germline stem cells, or replication of nuclear or mitochondrial DNA. Instead a large expansion of the somatic RNA pool is necessary for restoration of youthful function and longevity. Treating animals with the drug 5-fluoro-2'-deoxyuridine prevents this restoration by blocking reactivation of RNA metabolism. These observations define a critical early step during exit from adult reproductive diapause that is required for somatic rejuvenation of an adult metazoan animal.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Nikolay Burnaevskiy

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  2. Shengying Chen

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  3. Miguel Mailig

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  4. Anthony Reynolds

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  5. Shruti Karanth

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  6. Alexander Mendenhall

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  7. Marc Van Gilst

    Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  8. Matt Kaeberlein

    Department of Pathology, University of Washington, Seattle, United States
    For correspondence
    kaeber@uw.edu
    Competing interests
    Matt Kaeberlein, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1311-3421

Funding

National Institute on Aging (T32AG000057)

  • Nikolay Burnaevskiy

National Institute on Aging (R01AG031108)

  • Matt Kaeberlein

National Institute on Aging (R00AG045341)

  • Alexander Mendenhall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Burnaevskiy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,033
    views
  • 297
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nikolay Burnaevskiy
  2. Shengying Chen
  3. Miguel Mailig
  4. Anthony Reynolds
  5. Shruti Karanth
  6. Alexander Mendenhall
  7. Marc Van Gilst
  8. Matt Kaeberlein
(2018)
Reactivation of RNA metabolism underlies somatic restoration after adult reproductive diapause in C. elegans
eLife 7:e36194.
https://doi.org/10.7554/eLife.36194

Share this article

https://doi.org/10.7554/eLife.36194

Further reading

    1. Cell Biology
    Peipei Xu, Rui Zhang ... Wenxiang Meng
    Research Article

    The reorientation of the Golgi apparatus is crucial for cell migration and is regulated by multipolarity signals. A number of non-centrosomal microtubules anchor at the surface of the Golgi apparatus and play a vital role in the Golgi reorientation, but how the Golgi are regulated by polarity signals remains unclear. Calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) is a protein that anchors microtubules to the Golgi, a cellular organelle. Our research indicates that CAMSAP2 is dynamically localized at the Golgi during its reorientation processing. Further research shows that CAMSAP2 is potentially regulated by a polarity signaling molecule called MARK2, which interacts with CAMSAP2. We used mass spectrometry to find that MARK2 phosphorylates CAMSAP2 at serine-835, which affects its interaction with the Golgi-associated protein USO1 but not with CG-NAP or CLASPs. This interaction is critical for anchoring microtubules to the Golgi during cell migration, altering microtubule polarity distribution, and aiding Golgi reorientation. Our study reveals an important signaling pathway in Golgi reorientation during cell migration, which can provide insights for research in cancer cell migration, immune response, and targeted drug development.

    1. Cell Biology
    Sakshi Shambhavi, Sudipta Mondal ... Rajan Sankaranarayanan
    Research Article

    Diacylglycerols (DAGs) are used for metabolic purposes and are tightly regulated secondary lipid messengers in eukaryotes. DAG subspecies with different fatty-acyl chains are proposed to be involved in the activation of distinct PKC isoforms, resulting in diverse physiological outcomes. However, the molecular players and the regulatory origin for fine-tuning the PKC pathway are unknown. Here, we show that Dip2, a conserved DAG regulator across Fungi and Animalia, has emerged as a modulator of PKC signalling in yeast. Dip2 maintains the level of a specific DAG subpopulation, required for the activation of PKC-mediated cell wall integrity pathway. Interestingly, the canonical DAG-metabolism pathways, being promiscuous, are decoupled from PKC signalling. We demonstrate that these DAG subspecies are sourced from a phosphatidylinositol pool generated by the acyl-chain remodelling pathway. Furthermore, we provide insights into the intimate coevolutionary relationship between the regulator (Dip2) and the effector (PKC) of DAG-based signalling. Hence, our study underscores the establishment of Dip2-PKC axis about 1.2 billion years ago in Opisthokonta, which marks the rooting of the first specific DAG-based signalling module of eukaryotes.