Sex-dependent effects of in utero cannabinoid exposure on cortical function

Abstract

Cannabinoids can cross the placenta, thus may interfere with fetal endocannabinoid signaling during neurodevelopment, causing long-lasting deficits. Despite increasing reports of cannabis consumption during pregnancy, the protracted consequences of prenatal cannabinoid exposure (PCE) remain incompletely understood. Here we report sex-specific differences in behavioral and neuronal deficits in the adult progeny of rat dams exposed to low doses of cannabinoids during gestation. In males, PCE reduced social interaction, ablated endocannabinoid long-term depression (LTD) and heightened excitability of prefrontal cortex pyramidal neurons, while females were spared. Group 1 mGluR and endocannabinoid signaling regulate emotional behavior and synaptic plasticity. Notably, sex-differences following PCE included levels of mGluR1/5 and TRPV1R mRNA. Finally, positive allosteric modulation of mGlu5 and enhancement of anandamide levels restored LTD and social interaction in PCE adult males. Together, these results highlight marked sexual differences in the effects of PCE and introduce strategies for reversing detrimental effects of PCE.

Data availability

The processed data for the qPCR, behavior and electrophysiological data generated during the course of our study have been provided as Source Data.

Article and author information

Author details

  1. Anissa Bara

    Aix-Marseille University, INSERM, INMED, Marseille, France
    Competing interests
    No competing interests declared.
  2. Antonia Manduca

    Aix-Marseille University, INSERM, INMED, Marseille, France
    Competing interests
    No competing interests declared.
  3. Axel Bernabeu

    Aix-Marseille University, INSERM, INMED, Marseille, France
    Competing interests
    No competing interests declared.
  4. Milene Borsoi

    Aix-Marseille University, INSERM, INMED, Marseille, France
    Competing interests
    No competing interests declared.
  5. Michela Serviado

    Section of Biomedical Sciences and Technologies, Department of Science, University Roma Tre, Rome, Italy
    Competing interests
    No competing interests declared.
  6. Olivier Lassalle

    Aix-Marseille University, INSERM, INMED, Marseille, France
    Competing interests
    No competing interests declared.
  7. Michelle N Murphy

    Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Bloomington, United States
    Competing interests
    No competing interests declared.
  8. Jim Wager-Miller

    Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Bloomington, United States
    Competing interests
    No competing interests declared.
  9. Ken Mackie

    Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Bloomington, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8501-6199
  10. Anne-Laure Pelissier-Alicot

    Aix-Marseille University, INSERM, INMED, Marseille, France
    Competing interests
    No competing interests declared.
  11. Viviana Trezza

    Section of Biomedical Sciences and Technologies, Department of Science, University Roma Tre, Rome, Italy
    Competing interests
    No competing interests declared.
  12. Olivier J Manzoni

    Aix-Marseille University, INSERM, INMED, Marseille, France
    For correspondence
    olivier.manzoni@inserm.fr
    Competing interests
    Olivier J Manzoni, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5579-6208

Funding

Institut National de la Santé et de la Recherche Médicale

  • Michela Serviado

Conselho Nacional de Desenvolvimento Científico e Tecnológico

  • Milene Borsoi

Agence Nationale de la Recherche (Cannado)

  • Anissa Bara
  • Anne-Laure Pelissier-Alicot
  • Olivier J Manzoni

Fondation pour la Recherche Médicale (Equipe FRM 2015)

  • Anissa Bara
  • Milene Borsoi
  • Olivier J Manzoni

National Institutes of Health (5R01DA043982-02)

  • Ken Mackie
  • Olivier J Manzoni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Julie A Kauer, Brown University, United States

Ethics

Animal experimentation: Animals were treated in compliance with the European Communities Council Directive (86/609/EEC) and the United States National Institutes of Health Guide for the care and use of laboratory animals.

Version history

  1. Received: February 26, 2018
  2. Accepted: August 15, 2018
  3. Accepted Manuscript published: September 11, 2018 (version 1)
  4. Version of Record published: September 28, 2018 (version 2)

Copyright

© 2018, Bara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,918
    views
  • 572
    downloads
  • 90
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anissa Bara
  2. Antonia Manduca
  3. Axel Bernabeu
  4. Milene Borsoi
  5. Michela Serviado
  6. Olivier Lassalle
  7. Michelle N Murphy
  8. Jim Wager-Miller
  9. Ken Mackie
  10. Anne-Laure Pelissier-Alicot
  11. Viviana Trezza
  12. Olivier J Manzoni
(2018)
Sex-dependent effects of in utero cannabinoid exposure on cortical function
eLife 7:e36234.
https://doi.org/10.7554/eLife.36234

Share this article

https://doi.org/10.7554/eLife.36234

Further reading

    1. Neuroscience
    Yali Pan, Steven Frisson ... Ole Jensen
    Research Article

    Humans can read and comprehend text rapidly, implying that readers might process multiple words per fixation. However, the extent to which parafoveal words are previewed and integrated into the evolving sentence context remains disputed. We investigated parafoveal processing during natural reading by recording brain activity and eye movements using MEG and an eye tracker while participants silently read one-line sentences. The sentences contained an unpredictable target word that was either congruent or incongruent with the sentence context. To measure parafoveal processing, we flickered the target words at 60 Hz and measured the resulting brain responses (i.e. Rapid Invisible Frequency Tagging, RIFT) during fixations on the pre-target words. Our results revealed a significantly weaker tagging response for target words that were incongruent with the previous context compared to congruent ones, even within 100ms of fixating the word immediately preceding the target. This reduction in the RIFT response was also found to be predictive of individual reading speed. We conclude that semantic information is not only extracted from the parafovea but can also be integrated with the previous context before the word is fixated. This early and extensive parafoveal processing supports the rapid word processing required for natural reading. Our study suggests that theoretical frameworks of natural reading should incorporate the concept of deep parafoveal processing.

    1. Neuroscience
    Jack W Lindsey, Elias B Issa
    Research Article

    Object classification has been proposed as a principal objective of the primate ventral visual stream and has been used as an optimization target for deep neural network models (DNNs) of the visual system. However, visual brain areas represent many different types of information, and optimizing for classification of object identity alone does not constrain how other information may be encoded in visual representations. Information about different scene parameters may be discarded altogether (‘invariance’), represented in non-interfering subspaces of population activity (‘factorization’) or encoded in an entangled fashion. In this work, we provide evidence that factorization is a normative principle of biological visual representations. In the monkey ventral visual hierarchy, we found that factorization of object pose and background information from object identity increased in higher-level regions and strongly contributed to improving object identity decoding performance. We then conducted a large-scale analysis of factorization of individual scene parameters – lighting, background, camera viewpoint, and object pose – in a diverse library of DNN models of the visual system. Models which best matched neural, fMRI, and behavioral data from both monkeys and humans across 12 datasets tended to be those which factorized scene parameters most strongly. Notably, invariance to these parameters was not as consistently associated with matches to neural and behavioral data, suggesting that maintaining non-class information in factorized activity subspaces is often preferred to dropping it altogether. Thus, we propose that factorization of visual scene information is a widely used strategy in brains and DNN models thereof.