Sex-dependent effects of in utero cannabinoid exposure on cortical function

Abstract

Cannabinoids can cross the placenta, thus may interfere with fetal endocannabinoid signaling during neurodevelopment, causing long-lasting deficits. Despite increasing reports of cannabis consumption during pregnancy, the protracted consequences of prenatal cannabinoid exposure (PCE) remain incompletely understood. Here we report sex-specific differences in behavioral and neuronal deficits in the adult progeny of rat dams exposed to low doses of cannabinoids during gestation. In males, PCE reduced social interaction, ablated endocannabinoid long-term depression (LTD) and heightened excitability of prefrontal cortex pyramidal neurons, while females were spared. Group 1 mGluR and endocannabinoid signaling regulate emotional behavior and synaptic plasticity. Notably, sex-differences following PCE included levels of mGluR1/5 and TRPV1R mRNA. Finally, positive allosteric modulation of mGlu5 and enhancement of anandamide levels restored LTD and social interaction in PCE adult males. Together, these results highlight marked sexual differences in the effects of PCE and introduce strategies for reversing detrimental effects of PCE.

Data availability

The processed data for the qPCR, behavior and electrophysiological data generated during the course of our study have been provided as Source Data.

Article and author information

Author details

  1. Anissa Bara

    Aix-Marseille University, INSERM, INMED, Marseille, France
    Competing interests
    No competing interests declared.
  2. Antonia Manduca

    Aix-Marseille University, INSERM, INMED, Marseille, France
    Competing interests
    No competing interests declared.
  3. Axel Bernabeu

    Aix-Marseille University, INSERM, INMED, Marseille, France
    Competing interests
    No competing interests declared.
  4. Milene Borsoi

    Aix-Marseille University, INSERM, INMED, Marseille, France
    Competing interests
    No competing interests declared.
  5. Michela Serviado

    Section of Biomedical Sciences and Technologies, Department of Science, University Roma Tre, Rome, Italy
    Competing interests
    No competing interests declared.
  6. Olivier Lassalle

    Aix-Marseille University, INSERM, INMED, Marseille, France
    Competing interests
    No competing interests declared.
  7. Michelle N Murphy

    Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Bloomington, United States
    Competing interests
    No competing interests declared.
  8. Jim Wager-Miller

    Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Bloomington, United States
    Competing interests
    No competing interests declared.
  9. Ken Mackie

    Cannalab, Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Indiana University, Bloomington, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8501-6199
  10. Anne-Laure Pelissier-Alicot

    Aix-Marseille University, INSERM, INMED, Marseille, France
    Competing interests
    No competing interests declared.
  11. Viviana Trezza

    Section of Biomedical Sciences and Technologies, Department of Science, University Roma Tre, Rome, Italy
    Competing interests
    No competing interests declared.
  12. Olivier J Manzoni

    Aix-Marseille University, INSERM, INMED, Marseille, France
    For correspondence
    olivier.manzoni@inserm.fr
    Competing interests
    Olivier J Manzoni, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5579-6208

Funding

Institut National de la Santé et de la Recherche Médicale

  • Michela Serviado

Conselho Nacional de Desenvolvimento Científico e Tecnológico

  • Milene Borsoi

Agence Nationale de la Recherche (Cannado)

  • Anissa Bara
  • Anne-Laure Pelissier-Alicot
  • Olivier J Manzoni

Fondation pour la Recherche Médicale (Equipe FRM 2015)

  • Anissa Bara
  • Milene Borsoi
  • Olivier J Manzoni

National Institutes of Health (5R01DA043982-02)

  • Ken Mackie
  • Olivier J Manzoni

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Julie A Kauer, Brown University, United States

Ethics

Animal experimentation: Animals were treated in compliance with the European Communities Council Directive (86/609/EEC) and the United States National Institutes of Health Guide for the care and use of laboratory animals.

Version history

  1. Received: February 26, 2018
  2. Accepted: August 15, 2018
  3. Accepted Manuscript published: September 11, 2018 (version 1)
  4. Version of Record published: September 28, 2018 (version 2)

Copyright

© 2018, Bara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,867
    views
  • 564
    downloads
  • 78
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anissa Bara
  2. Antonia Manduca
  3. Axel Bernabeu
  4. Milene Borsoi
  5. Michela Serviado
  6. Olivier Lassalle
  7. Michelle N Murphy
  8. Jim Wager-Miller
  9. Ken Mackie
  10. Anne-Laure Pelissier-Alicot
  11. Viviana Trezza
  12. Olivier J Manzoni
(2018)
Sex-dependent effects of in utero cannabinoid exposure on cortical function
eLife 7:e36234.
https://doi.org/10.7554/eLife.36234

Share this article

https://doi.org/10.7554/eLife.36234

Further reading

    1. Neuroscience
    Olujolagbe Layinka, Luca D Hargitai ... Florence YN Leung
    Feature Article

    Improving our understanding of autism, ADHD, dyslexia and other neurodevelopmental conditions requires collaborations between genetics, psychiatry, the social sciences and other fields of research.

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.