Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias

  1. Christopher E Laumer  Is a corresponding author
  2. Harald Gruber-Vodicka
  3. Michael G Hadfield
  4. Vicki B Pearse
  5. Ana Riesgo
  6. John C Marioni
  7. Gonzalo Giribet
  1. Wellcome Trust Sanger Institute, United Kingdom
  2. Max Planck Institute for Marine Microbiology, Germany
  3. University of Hawaii at Manoa, United States
  4. University of California, Santa Cruz, United States
  5. The Natural History Museum, United Kingdom
  6. Harvard University, United States

Abstract

The phylogenetic placement of the morphologically simple placozoans is crucial to understanding the evolution of complex animal traits. Here, we examine the influence of adding new genomes from placozoans to a large dataset designed to study the deepest splits in the animal phylogeny. Using site-heterogeneous substitution models, we show that it is possible to obtain strong support, in both amino acid and reduced-alphabet matrices, for either a sister-group relationship between Cnidaria and Placozoa, or for Cnidaria and Bilateria as seen in most published work to date, depending on the orthologues selected to construct the matrix. We demonstrate that a majority of genes show evidence of compositional heterogeneity, and that support for the Cnidaria+Bilateria clade can be assigned to this source of systematic error. In interpreting these results, we caution against a peremptory reading of placozoans as secondarily reduced forms of little relevance to broader discussions of early animal evolution.

Data availability

SRA accession codes, where used, and all alternative sources for sequence data (e.g. individually hosted websites, personal communications), are listed above in the Materials and Methods section. A DataDryad accession is available at https://doi.org/10.5061/dryad.6cm1166, which makes available all helper scripts, orthogroups, multiple sequence alignments, phylogenetic program output, and raw host proteomes inputted to OrthoFinder. Metagenomic bins containing placozoan host contigs and raw RNA reads used to derive gene annotations from H4, H6 and H11 isolates are also provided in this accession. PhyloBayes .chain files, due to their large size, are separately accessioned at in Zenodo at https://doi.org/10.5281/zenodo.1197272.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Christopher E Laumer

    Wellcome Trust Sanger Institute, Hinxton, United Kingdom
    For correspondence
    claumer@ebi.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8097-8516
  2. Harald Gruber-Vodicka

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael G Hadfield

    Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Vicki B Pearse

    Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ana Riesgo

    Life Sciences, Invertebrate Division, The Natural History Museum, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. John C Marioni

    Wellcome Trust Sanger Institute, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9092-0852
  7. Gonzalo Giribet

    Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Max-Planck-Institute fuer Marine Microbiologie

  • Harald Gruber-Vodicka

EMBL-European Bioinformatics Institute

  • John C Marioni

Harvard University Faculty of Arts and Sciences

  • Gonzalo Giribet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Laumer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,313
    views
  • 736
    downloads
  • 88
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher E Laumer
  2. Harald Gruber-Vodicka
  3. Michael G Hadfield
  4. Vicki B Pearse
  5. Ana Riesgo
  6. John C Marioni
  7. Gonzalo Giribet
(2018)
Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias
eLife 7:e36278.
https://doi.org/10.7554/eLife.36278

Share this article

https://doi.org/10.7554/eLife.36278

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zach Hensel
    Short Report

    Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated ‘mutational fitness’ of substitutions, a measurement of the difference between a substitution’s observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.

    1. Evolutionary Biology
    Yiheng Zhang, Xing Wang ... Xiaoguang Yang
    Research Article

    Although fossil evidence suggests the existence of an early muscular system in the ancient cnidarian jellyfish from the early Cambrian Kuanchuanpu biota (ca. 535 Ma), south China, the mechanisms underlying the feeding and respiration of the early jellyfish are conjectural. Recently, the polyp inside the periderm of olivooids was demonstrated to be a calyx-like structure, most likely bearing short tentacles and bundles of coronal muscles at the edge of the calyx, thus presumably contributing to feeding and respiration. Here, we simulate the contraction and expansion of the microscopic periderm-bearing olivooid Quadrapyrgites via the fluid-structure interaction computational fluid dynamics (CFD) method to investigate their feeding and respiratory activities. The simulations show that the rate of water inhalation by the polyp subumbrella is positively correlated with the rate of contraction and expansion of the coronal muscles, consistent with the previous feeding and respiration hypothesis. The dynamic simulations also show that the frequent inhalation/exhalation of water through the periderm polyp expansion/contraction conducted by the muscular system of Quadrapyrgites most likely represents the ancestral feeding and respiration patterns of Cambrian sedentary medusozoans that predated the rhythmic jet-propelled swimming of the modern jellyfish. Most importantly for these Cambrian microscopic sedentary medusozoans, the increase of body size and stronger capacity of muscle contraction may have been indispensable in the stepwise evolution of active feeding and subsequent swimming in a higher flow (or higher Reynolds number) environment.