1. Evolutionary Biology
Download icon

Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias

  1. Christopher E Laumer  Is a corresponding author
  2. Harald Gruber-Vodicka
  3. Michael G Hadfield
  4. Vicki B Pearse
  5. Ana Riesgo
  6. John C Marioni
  7. Gonzalo Giribet
  1. Wellcome Trust Sanger Institute, United Kingdom
  2. Max Planck Institute for Marine Microbiology, Germany
  3. University of Hawaii at Manoa, United States
  4. University of California, Santa Cruz, United States
  5. The Natural History Museum, United Kingdom
  6. Harvard University, United States
Short Report
  • Cited 18
  • Views 2,735
  • Annotations
Cite this article as: eLife 2018;7:e36278 doi: 10.7554/eLife.36278

Abstract

The phylogenetic placement of the morphologically simple placozoans is crucial to understanding the evolution of complex animal traits. Here, we examine the influence of adding new genomes from placozoans to a large dataset designed to study the deepest splits in the animal phylogeny. Using site-heterogeneous substitution models, we show that it is possible to obtain strong support, in both amino acid and reduced-alphabet matrices, for either a sister-group relationship between Cnidaria and Placozoa, or for Cnidaria and Bilateria as seen in most published work to date, depending on the orthologues selected to construct the matrix. We demonstrate that a majority of genes show evidence of compositional heterogeneity, and that support for the Cnidaria+Bilateria clade can be assigned to this source of systematic error. In interpreting these results, we caution against a peremptory reading of placozoans as secondarily reduced forms of little relevance to broader discussions of early animal evolution.

Article and author information

Author details

  1. Christopher E Laumer

    Wellcome Trust Sanger Institute, Hinxton, United Kingdom
    For correspondence
    claumer@ebi.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8097-8516
  2. Harald Gruber-Vodicka

    Max Planck Institute for Marine Microbiology, Bremen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael G Hadfield

    Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Vicki B Pearse

    Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Ana Riesgo

    Life Sciences, Invertebrate Division, The Natural History Museum, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. John C Marioni

    Wellcome Trust Sanger Institute, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9092-0852
  7. Gonzalo Giribet

    Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Max-Planck-Institute fuer Marine Microbiologie

  • Harald Gruber-Vodicka

EMBL-European Bioinformatics Institute

  • John C Marioni

Harvard University Faculty of Arts and Sciences

  • Gonzalo Giribet

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Antonis Rokas, Vanderbilt University, United States

Publication history

  1. Received: February 27, 2018
  2. Accepted: October 11, 2018
  3. Accepted Manuscript published: October 30, 2018 (version 1)
  4. Version of Record published: December 3, 2018 (version 2)

Copyright

© 2018, Laumer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,735
    Page views
  • 457
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Ecology
    2. Evolutionary Biology
    Syuan-Jyun Sun, Rebecca M Kilner
    Research Article

    Ecological conditions are known to change the expression of mutualisms though the causal agents driving such changes remain poorly understood. Here we show that temperature stress modulates the harm threatened by a common enemy, and thereby induces a phoretic mite to become a protective mutualist. Our experiments focus on the interactions between the burying beetle Nicrophorus vespilloides, an associated mite species Poecilochirus carabi and their common enemy, blowflies, when all three species reproduce on the same small vertebrate carrion. We show that mites compete with beetle larvae for food in the absence of blowflies, and reduce beetle reproductive success. However, when blowflies breed on the carrion too, mites enhance beetle reproductive success by eating blowfly eggs. High densities of mites are especially effective at promoting beetle reproductive success at higher and lower natural ranges in temperature, when blowfly larvae are more potent rivals for the limited resources on the carcass.

    1. Evolutionary Biology
    2. Neuroscience
    Hui Gong, Lucia Prieto-Godino
    Insight

    Natural light gradients within a habitat may have helped form new fly species that have differing preferences for light.