Arabidopsis formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata

  1. Min Diao
  2. Sulin Ren
  3. Qiannan Wang
  4. Lichao Qian
  5. Jiangfeng Shen
  6. Yule Liu
  7. Shanjin Huang  Is a corresponding author
  1. Tsinghua University, China
  2. Chinese Academy of Sciences, China

Abstract

Here, we demonstrate that Arabidopsis thaliana Formin 2 (AtFH2) localizes to PD through its transmembrane domain and is required for normal intercellular trafficking. Although loss-of-function atfh2 mutants have no overt developmental defect, PD's permeability and sensitivity to virus infection are increased in atfh2 plants. Interestingly, AtFH2 functions in a partially redundant manner with its closest homolog AtFH1, which also contains a PD localization signal. Strikingly, targeting of Class I formins to PD was also confirmed in rice, suggesting that the involvement of Class I formins in regulating actin dynamics at PD may be evolutionarily conserved in plants. In vitro biochemical analysis showed that AtFH2 fails to nucleate actin assembly but caps and stabilizes actin filaments. We also demonstrate that the interaction between AtFH2 and actin filaments is crucial for its function in vivo. These data allow us to propose that AtFH2 regulates PD's permeability by anchoring actin filaments to PD.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for related Figures shown in the manuscript.

Article and author information

Author details

  1. Min Diao

    Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Sulin Ren

    Institute of Botany, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Qiannan Wang

    Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Lichao Qian

    MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jiangfeng Shen

    Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yule Liu

    MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4423-6045
  7. Shanjin Huang

    Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
    For correspondence
    sjhuang@tsinghua.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9517-2515

Funding

National Natural Science Foundation of China (31471266; 31671390)

  • Shanjin Huang

National Natural Science Foundation of China (31121065)

  • Yule Liu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gary Stacey, University of Missouri, United States

Version history

  1. Received: March 1, 2018
  2. Accepted: August 15, 2018
  3. Accepted Manuscript published: August 16, 2018 (version 1)
  4. Version of Record published: September 6, 2018 (version 2)
  5. Version of Record updated: May 1, 2019 (version 3)

Copyright

© 2018, Diao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,033
    views
  • 806
    downloads
  • 48
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Min Diao
  2. Sulin Ren
  3. Qiannan Wang
  4. Lichao Qian
  5. Jiangfeng Shen
  6. Yule Liu
  7. Shanjin Huang
(2018)
Arabidopsis formin 2 regulates cell-to-cell trafficking by capping and stabilizing actin filaments at plasmodesmata
eLife 7:e36316.
https://doi.org/10.7554/eLife.36316

Share this article

https://doi.org/10.7554/eLife.36316

Further reading

    1. Plant Biology
    Stephen Gonzalez, Joseph Swift ... Joseph R Ecker
    Short Report

    Soil-free assays that induce water stress are routinely used to investigate drought responses in the plant Arabidopsis thaliana. Due to their ease of use, the research community often relies on polyethylene glycol (PEG), mannitol, and salt (NaCl) treatments to reduce the water potential of agar media, and thus induce drought conditions in the laboratory. However, while these types of stress can create phenotypes that resemble those of water deficit experienced by soil-grown plants, it remains unclear how these treatments compare at the transcriptional level. Here, we demonstrate that these different methods of lowering water potential elicit both shared and distinct transcriptional responses in Arabidopsis shoot and root tissue. When we compared these transcriptional responses to those found in Arabidopsis roots subject to vermiculite drying, we discovered many genes induced by vermiculite drying were repressed by low water potential treatments on agar plates (and vice versa). Additionally, we also tested another method for lowering water potential of agar media. By increasing the nutrient content and tensile strength of agar, we show the ‘hard agar’ (HA) treatment can be leveraged as a high-throughput assay to investigate natural variation in Arabidopsis growth responses to low water potential.

    1. Plant Biology
    Zhao-Ying Zeng, Jun-Rong Huang ... Han-Bo Zhang
    Research Article

    Microbes strongly affect invasive plant growth. However, how phyllosphere and rhizosphere soil microbes distinctively affect seedling mortality and growth of invaders across ontogeny under varying soil nutrient levels remains unclear. In this study, we used the invader Ageratina adenophora to evaluate these effects. We found that higher proportions of potential pathogens were detected in core microbial taxa in leaf litter than rhizosphere soil and thus leaf inoculation had more adverse effects on seed germination and seedling survival than soil inoculation. Microbial inoculation at different growth stages altered the microbial community and functions of seedlings, and earlier inoculation had a more adverse effect on seedling survival and growth. The soil nutrient level did not affect microbe-mediated seedling growth and the relative abundance of the microbial community and functions involved in seedling growth. The effects of some microbial genera on seedling survival are distinct from those on growth. Moreover, the A. adenophora seedling-killing effects of fungal strains isolated from dead seedlings by non-sterile leaf inoculation exhibited significant phylogenetic signals, by which strains of Allophoma and Alternaria generally caused high seedling mortality. Our study stresses the essential role of A. adenophora litter microbes in population establishment by regulating seedling density and growth.