Ultra-Rapid serial visual presentation reveals dynamics of feedforward and feedback processes in the ventral visual pathway

  1. Yalda Mohsenzadeh
  2. Sheng Qin
  3. Radoslaw M Cichy
  4. Dimitrios Pantazis  Is a corresponding author
  1. Massachusetts Institute of Technology, United States
  2. Free University of Berlin, Germany

Abstract

Human visual recognition activates a dense network of overlapping feedforward and recurrent neuronal processes, making it hard to disentangle processing in the feedforward from the feedback direction. Here, we used ultra-rapid serial visual presentation to suppress sustained activity that blurs the boundaries of processing steps, enabling us to resolve two distinct stages of processing with MEG multivariate pattern classification. The first processing stage was the rapid activation cascade of the bottom-up sweep, which terminated early as visual stimuli were presented at progressively faster rates. The second stage was the emergence of categorical information with peak latency that shifted later in time with progressively faster stimulus presentations, indexing time-consuming recurrent processing. Using MEG-fMRI fusion with representational similarity, we localized recurrent signals in early visual cortex. Together, our findings segregated an initial bottom-up sweep from subsequent feedback processing, and revealed the neural signature of increased recurrent processing demands for challenging viewing conditions.

Data availability

All data generated or analysed during this study to support the main findings are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 3 and 5.

Article and author information

Author details

  1. Yalda Mohsenzadeh

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8525-957X
  2. Sheng Qin

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Radoslaw M Cichy

    Education and Psychology, Free University of Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Dimitrios Pantazis

    McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
    For correspondence
    pantazis@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8246-8878

Funding

McGovern Institute (Neurotechnology Program)

  • Dimitrios Pantazis

Emmy Noether Award (CI241/1-1)

  • Radoslaw M Cichy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the Institutional Review Board of the Massachusetts Institute of Technology and followed the principles of the Declaration of Helsinki. All subjects signed an informed consent form and were compensated for their participation.

Reviewing Editor

  1. Floris P de Lange, Donders Institute for Brain, Cognition and Behaviour, Netherlands

Version history

  1. Received: March 1, 2018
  2. Accepted: June 16, 2018
  3. Accepted Manuscript published: June 21, 2018 (version 1)
  4. Version of Record published: July 3, 2018 (version 2)

Copyright

© 2018, Mohsenzadeh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,218
    Page views
  • 550
    Downloads
  • 51
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yalda Mohsenzadeh
  2. Sheng Qin
  3. Radoslaw M Cichy
  4. Dimitrios Pantazis
(2018)
Ultra-Rapid serial visual presentation reveals dynamics of feedforward and feedback processes in the ventral visual pathway
eLife 7:e36329.
https://doi.org/10.7554/eLife.36329

Further reading

    1. Neuroscience
    Weiwei Qui, Chelsea R Hutch ... Darleen Sandoval
    Research Article

    Several discrete groups of feeding-regulated neurons in the nucleus of the solitary tract (nucleus tractus solitarius; NTS) suppress food intake, including avoidance-promoting neurons that express Cck (NTSCck cells) and distinct Lepr- and Calcr-expressing neurons (NTSLepr and NTSCalcr cells, respectively) that suppress food intake without promoting avoidance. To test potential synergies among these cell groups we manipulated multiple NTS cell populations simultaneously. We found that activating multiple sets of NTS neurons (e.g., NTSLepr plus NTSCalcr (NTSLC), or NTSLC plus NTSCck (NTSLCK)) suppressed feeding more robustly than activating single populations. While activating groups of cells that include NTSCck neurons promoted conditioned taste avoidance (CTA), NTSLC activation produced no CTA despite abrogating feeding. Thus, the ability to promote CTA formation represents a dominant effect but activating multiple non-aversive populations augments the suppression of food intake without provoking avoidance. Furthermore, silencing multiple NTS neuron groups augmented food intake and body weight to a greater extent than silencing single populations, consistent with the notion that each of these NTS neuron populations plays crucial and cumulative roles in the control of energy balance. We found that silencing NTSLCK neurons failed to blunt the weight-loss response to vertical sleeve gastrectomy (VSG) and that feeding activated many non-NTSLCK neurons, however, suggesting that as-yet undefined NTS cell types must make additional contributions to the restraint of feeding.

    1. Genetics and Genomics
    2. Neuroscience
    Ji-Eun Ahn, Hubert Amrein
    Research Article

    In the fruit fly Drosophila melanogaster, gustatory sensory neurons express taste receptors that are tuned to distinct groups of chemicals, thereby activating neural ensembles that elicit either feeding or avoidance behavior. Members of a family of ligand -gated receptor channels, the Gustatory receptors (Grs), play a central role in these behaviors. In general, closely related, evolutionarily conserved Gr proteins are co-expressed in the same type of taste neurons, tuned to chemically related compounds, and therefore triggering the same behavioral response. Here, we report that members of the Gr28 subfamily are expressed in largely non-overlapping sets of taste neurons in Drosophila larvae, detect chemicals of different valence, and trigger opposing feeding behaviors. We determined the intrinsic properties of Gr28 neurons by expressing the mammalian Vanilloid Receptor 1 (VR1), which is activated by capsaicin, a chemical to which wild-type Drosophila larvae do not respond. When VR1 is expressed in Gr28a neurons, larvae become attracted to capsaicin, consistent with reports showing that Gr28a itself encodes a receptor for nutritious RNA. In contrast, expression of VR1 in two pairs of Gr28b.c neurons triggers avoidance to capsaicin. Moreover, neuronal inactivation experiments show that the Gr28b.c neurons are necessary for avoidance of several bitter compounds. Lastly, behavioral experiments of Gr28 deficient larvae and live Ca2+ imaging studies of Gr28b.c neurons revealed that denatonium benzoate, a synthetic bitter compound that shares structural similarities with natural bitter chemicals, is a ligand for a receptor complex containing a Gr28b.c or Gr28b.a subunit. Thus, the Gr28 proteins, which have been evolutionarily conserved over 260 million years in insects, represent the first taste receptor subfamily in which specific members mediate behavior with opposite valence.