Empty conformers of HLA-B preferentially bind CD8 and regulate CD8+ T cell function

  1. Jie Geng
  2. John D Altman
  3. Sujatha Krishnakumar
  4. Malini Raghavan  Is a corresponding author
  1. University of Michigan, United States
  2. Yerkes National Primate Research Center, Emory University School of Medicine, United States
  3. Sirona Genomics, Immucor, Inc, United States


When complexed with antigenic peptides, human leukocyte antigen (HLA) class I (HLA-I) molecules initiate CD8+ T cell responses via interaction with the T cell receptor (TCR) and co-receptor CD8. Peptides are generally critical for the stable cell surface expression of HLA-I molecules. However, for HLA-I alleles such as HLA-B*35:01, peptide-deficient (empty) heterodimers are thermostable and detectable on the cell surface. Additionally, peptide-deficient HLA-B*35:01 tetramers preferentially bind CD8 and to a majority of blood-derived CD8+ T cells via a CD8-dependent binding mode. Further functional studies reveal that peptide-deficient conformers of HLA-B*35:01 do not directly activate CD8+ T cells, but accumulate at the immunological synapse in antigen-induced responses, and enhance cognate peptide-induced cell adhesion and CD8+ T cell activation. Together, these findings indicate that HLA-I peptide occupancy influences CD8 binding affinity, and reveal a new set of regulators of CD8+ T cell activation, mediated by the binding of empty HLA-I to CD8.

Data availability

The data that support the findings of this study are openly available in Dryad at https://doi.org/10.5061/dryad.543pp71.

The following data sets were generated

Article and author information

Author details

  1. Jie Geng

    Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  2. John D Altman

    Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, United States
    Competing interests
    No competing interests declared.
  3. Sujatha Krishnakumar

    Research and Development, Sirona Genomics, Immucor, Inc, Mountain View, United States
    Competing interests
    Sujatha Krishnakumar, is affiliated with the Sirona Genomics, where the HLA genotyping for our study was done. The author has no financial interests to declare.
  4. Malini Raghavan

    Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
    For correspondence
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1345-9318


NIH Office of the Director (AI044115)

  • Malini Raghavan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Human subjects: Blood was collected from consented healthy donors for HLA genotyping and functional studies in accordance with a University of Michigan IRB approved protocol (HUM00071750).

Reviewing Editor

  1. Michael L Dustin, University of Oxford, United Kingdom

Publication history

  1. Received: March 2, 2018
  2. Accepted: April 23, 2018
  3. Accepted Manuscript published: May 9, 2018 (version 1)
  4. Version of Record published: June 6, 2018 (version 2)


© 2018, Geng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 1,653
    Page views
  • 257
  • 20

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jie Geng
  2. John D Altman
  3. Sujatha Krishnakumar
  4. Malini Raghavan
Empty conformers of HLA-B preferentially bind CD8 and regulate CD8+ T cell function
eLife 7:e36341.
  1. Further reading

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Jia C Wang et al.
    Research Article Updated

    B-cell activation and immune synapse (IS) formation with membrane-bound antigens are actin-dependent processes that scale positively with the strength of antigen-induced signals. Importantly, ligating the B-cell integrin, LFA-1, with ICAM-1 promotes IS formation when antigen is limiting. Whether the actin cytoskeleton plays a specific role in integrin-dependent IS formation is unknown. Here, we show using super-resolution imaging of mouse primary B cells that LFA-1:ICAM-1 interactions promote the formation of an actomyosin network that dominates the B-cell IS. This network is created by the formin mDia1, organized into concentric, contractile arcs by myosin 2A, and flows inward at the same rate as B-cell receptor (BCR):antigen clusters. Consistently, individual BCR microclusters are swept inward by individual actomyosin arcs. Under conditions where integrin is required for synapse formation, inhibiting myosin impairs synapse formation, as evidenced by reduced antigen centralization, diminished BCR signaling, and defective signaling protein distribution at the synapse. Together, these results argue that a contractile actomyosin arc network plays a key role in the mechanism by which LFA-1 co-stimulation promotes B-cell activation and IS formation.

    1. Immunology and Inflammation
    2. Neuroscience
    Sabela Rodríguez-Lorenzo et al.
    Research Article Updated

    Multiple sclerosis (MS) is a chronic demyelinating disease characterised by immune cell infiltration resulting in lesions that preferentially affect periventricular areas of the brain. Despite research efforts to define the role of various immune cells in MS pathogenesis, the focus has been on a few immune cell populations while full-spectrum analysis, encompassing others such as natural killer (NK) cells, has not been performed. Here, we used single-cell mass cytometry (CyTOF) to profile the immune landscape of brain periventricular areas – septum and choroid plexus – and of the circulation from donors with MS, dementia and controls without neurological disease. Using a 37-marker panel, we revealed the infiltration of T cells and antibody-secreting cells in periventricular brain regions and identified a novel NK cell signature specific to MS. CD56bright NK cells were accumulated in the septum of MS donors and displayed an activated and migratory phenotype, similar to that of CD56bright NK cells in the circulation. We validated this signature by multiplex immunohistochemistry and found that the number of NK cells with high expression of granzyme K, typical of the CD56bright subset, was increased in both periventricular lesions and the choroid plexus of donors with MS. Together, our multi-tissue single-cell data shows that CD56bright NK cells accumulate in the periventricular brain regions of MS patients, bringing NK cells back to the spotlight of MS pathology.