Empty conformers of HLA-B preferentially bind CD8 and regulate CD8+ T cell function

  1. Jie Geng
  2. John D Altman
  3. Sujatha Krishnakumar
  4. Malini Raghavan  Is a corresponding author
  1. University of Michigan, United States
  2. Yerkes National Primate Research Center, Emory University School of Medicine, United States
  3. Sirona Genomics, Immucor, Inc, United States

Abstract

When complexed with antigenic peptides, human leukocyte antigen (HLA) class I (HLA-I) molecules initiate CD8+ T cell responses via interaction with the T cell receptor (TCR) and co-receptor CD8. Peptides are generally critical for the stable cell surface expression of HLA-I molecules. However, for HLA-I alleles such as HLA-B*35:01, peptide-deficient (empty) heterodimers are thermostable and detectable on the cell surface. Additionally, peptide-deficient HLA-B*35:01 tetramers preferentially bind CD8 and to a majority of blood-derived CD8+ T cells via a CD8-dependent binding mode. Further functional studies reveal that peptide-deficient conformers of HLA-B*35:01 do not directly activate CD8+ T cells, but accumulate at the immunological synapse in antigen-induced responses, and enhance cognate peptide-induced cell adhesion and CD8+ T cell activation. Together, these findings indicate that HLA-I peptide occupancy influences CD8 binding affinity, and reveal a new set of regulators of CD8+ T cell activation, mediated by the binding of empty HLA-I to CD8.

Data availability

The data that support the findings of this study are openly available in Dryad at https://doi.org/10.5061/dryad.543pp71.

The following data sets were generated

Article and author information

Author details

  1. Jie Geng

    Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  2. John D Altman

    Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, United States
    Competing interests
    No competing interests declared.
  3. Sujatha Krishnakumar

    Research and Development, Sirona Genomics, Immucor, Inc, Mountain View, United States
    Competing interests
    Sujatha Krishnakumar, is affiliated with the Sirona Genomics, where the HLA genotyping for our study was done. The author has no financial interests to declare.
  4. Malini Raghavan

    Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
    For correspondence
    malinir@umich.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1345-9318

Funding

NIH Office of the Director (AI044115)

  • Malini Raghavan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Blood was collected from consented healthy donors for HLA genotyping and functional studies in accordance with a University of Michigan IRB approved protocol (HUM00071750).

Copyright

© 2018, Geng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,031
    views
  • 311
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jie Geng
  2. John D Altman
  3. Sujatha Krishnakumar
  4. Malini Raghavan
(2018)
Empty conformers of HLA-B preferentially bind CD8 and regulate CD8+ T cell function
eLife 7:e36341.
https://doi.org/10.7554/eLife.36341

Share this article

https://doi.org/10.7554/eLife.36341

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Rocio Vicario, Stamatina Fragkogianni ... Frédéric Geissmann
    Research Article

    Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however, few studies have investigated its role in neurodegenerative processes such as Alzheimer’s disease (AD). Here, we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in humans, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.

    1. Immunology and Inflammation
    Sytse J Piersma, Shasha Li ... Wayne M Yokoyama
    Research Article

    Natural killer (NK) cells recognize target cells through germline-encoded activation and inhibitory receptors enabling effective immunity against viruses and cancer. The Ly49 receptor family in the mouse and killer immunoglobin-like receptor family in humans play a central role in NK cell immunity through recognition of major histocompatibility complex class I (MHC-I) and related molecules. Functionally, these receptor families are involved in the licensing and rejection of MHC-I-deficient cells through missing-self. The Ly49 family is highly polymorphic, making it challenging to detail the contributions of individual Ly49 receptors to NK cell function. Herein, we showed mice lacking expression of all Ly49s were unable to reject missing-self target cells in vivo, were defective in NK cell licensing, and displayed lower KLRG1 on the surface of NK cells. Expression of Ly49A alone on an H-2Dd background restored missing-self target cell rejection, NK cell licensing, and NK cell KLRG1 expression. Thus, a single inhibitory Ly49 receptor is sufficient to license NK cells and mediate missing-self in vivo.