1. Structural Biology and Molecular Biophysics
Download icon

Irreversible temperature gating in trpv1 sheds light on channel activation

Short Report
  • Cited 23
  • Views 2,491
  • Annotations
Cite this article as: eLife 2018;7:e36372 doi: 10.7554/eLife.36372

Abstract

Temperature activated TRP channels or thermoTRPs are among the only proteins that can directly convert temperature changes into changes in channel open probability. In spite of a wealth of functional and structural information, the mechanism of temperature activation remains unknown. We have carefully characterized the repeated activation of TRPV1 by thermal stimuli and discovered a previously unknown inactivation process, which is irreversible. We propose that this form of gating in TRPV1 channels is a consequence of the heat absorption process that leads to channel opening.

Data availability

Summary data for Figures 1, 2, 3, and 4 have been provided as source data files. The electrophysiological recordings will be made available upon request to the corresponding author.

Article and author information

Author details

  1. Ana Sánchez-Moreno

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  2. Eduardo Guevara-Hernández

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  3. Ricardo Contreras-Cervera

    Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  4. Gisela Rangel-Yescas

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  5. Ernesto Ladrón-de-Guevara

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  6. Tamara Rosenbaum

    Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  7. Leon D Islas

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    For correspondence
    leon.islas@gmail.com
    Competing interests
    Leon D Islas, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7461-5214

Funding

Consejo Nacional de Ciencia y Tecnología (CB-2015-252644)

  • Leon D Islas

DGAPA-PAPIIT-UNAM (IN209515)

  • Leon D Islas

DGAPA-PAPIITT-UNAM (IN200717)

  • Tamara Rosenbaum

Consejo Nacional de Ciencia y Tecnología (CB-2014-01-238399)

  • Tamara Rosenbaum

Consejo Nacional de Ciencia y Tecnología (Fronteras de la Ciencia 77)

  • Tamara Rosenbaum
  • Leon D Islas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Baron Chanda, University of Wisconsin-Madison, United States

Publication history

  1. Received: March 3, 2018
  2. Accepted: May 26, 2018
  3. Accepted Manuscript published: June 5, 2018 (version 1)
  4. Version of Record published: June 13, 2018 (version 2)

Copyright

© 2018, Sánchez-Moreno et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,491
    Page views
  • 506
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Immunology and Inflammation
    2. Structural Biology and Molecular Biophysics
    Mohamed A Badawy et al.
    Research Article

    Human serum albumin (HSA) is the frontline antioxidant protein in blood with established anti-inflammatory and anticoagulation functions. Here we report that COVID-19-induced oxidative stress inflicts structural damages to HSA and is linked with mortality outcome in critically ill patients. We recruited 39 patients who were followed up for a median of 12.5 days (1-35 days), among them 23 had died. Analyzing blood samples from patients and healthy individuals (n=11), we provide evidence that neutrophils are major sources of oxidative stress in blood and that hydrogen peroxide is highly accumulated in plasmas of non-survivors. We then analyzed electron paramagnetic resonance (EPR) spectra of spin labelled fatty acids (SLFA) bound with HSA in whole blood of control, survivor, and non-survivor subjects (n=10-11). Non-survivor' HSA showed dramatically reduced protein packing order parameter, faster SLFA correlational rotational time, and smaller S/W ratio (strong-binding/weak-binding sites within HSA), all reflecting remarkably fluid protein microenvironments. Following loading/unloading of 16-DSA we show that transport function of HSA maybe impaired in severe patients. Stratified at the means, Kaplan–Meier survival analysis indicated that lower values of S/W ratio and accumulated H2O2 in plasma significantly predicted in-hospital mortality (S/W≤0.15, 81.8% (18/22) vs. S/W>0.15, 18.2% (4/22), p=0.023; plasma [H2O2]>8.6 mM, 65.2% (15/23) vs. 34.8% (8/23), p=0.043). When we combined these two parameters as the ratio ((S/W)/[H2O2]) to derive a risk score, the resultant risk score lower than the mean (< 0.019) predicted mortality with high fidelity (95.5% (21/22) vs. 4.5% (1/22), logrank c2 = 12.1, p=4.9x10-4). The derived parameters may provide a surrogate marker to assess new candidates for COVID-19 treatments targeting HSA replacements and/or oxidative stress.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Carolina Franco Nitta et al.
    Research Article

    Crosstalk between different receptor tyrosine kinases (RTKs) is thought to drive oncogenic signaling and allow therapeutic escape. EGFR and RON are two such RTKs from different subfamilies, which engage in crosstalk through unknown mechanisms. We combined high-resolution imaging with biochemical and mutational studies to ask how EGFR and RON communicate. EGF stimulation promotes EGFR-dependent phosphorylation of RON, but ligand stimulation of RON does not trigger EGFR phosphorylation – arguing that crosstalk is unidirectional. Nanoscale imaging reveals association of EGFR and RON in common plasma membrane microdomains. Two-color single particle tracking captured formation of complexes between RON and EGF-bound EGFR. Our results further show that RON is a substrate for EGFR kinase, and that transactivation of RON requires formation of a signaling competent EGFR dimer. These results support a role for direct EGFR/RON interactions in propagating crosstalk, such that EGF-stimulated EGFR phosphorylates RON to activate RON-directed signaling.