Abstract

Temperature activated TRP channels or thermoTRPs are among the only proteins that can directly convert temperature changes into changes in channel open probability. In spite of a wealth of functional and structural information, the mechanism of temperature activation remains unknown. We have carefully characterized the repeated activation of TRPV1 by thermal stimuli and discovered a previously unknown inactivation process, which is irreversible. We propose that this form of gating in TRPV1 channels is a consequence of the heat absorption process that leads to channel opening.

Data availability

Summary data for Figures 1, 2, 3, and 4 have been provided as source data files. The electrophysiological recordings will be made available upon request to the corresponding author.

Article and author information

Author details

  1. Ana Sánchez-Moreno

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  2. Eduardo Guevara-Hernández

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  3. Ricardo Contreras-Cervera

    Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  4. Gisela Rangel-Yescas

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  5. Ernesto Ladrón-de-Guevara

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  6. Tamara Rosenbaum

    Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  7. Leon D Islas

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    For correspondence
    leon.islas@gmail.com
    Competing interests
    Leon D Islas, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7461-5214

Funding

Consejo Nacional de Ciencia y Tecnología (CB-2015-252644)

  • Leon D Islas

DGAPA-PAPIIT-UNAM (IN209515)

  • Leon D Islas

DGAPA-PAPIITT-UNAM (IN200717)

  • Tamara Rosenbaum

Consejo Nacional de Ciencia y Tecnología (CB-2014-01-238399)

  • Tamara Rosenbaum

Consejo Nacional de Ciencia y Tecnología (Fronteras de la Ciencia 77)

  • Tamara Rosenbaum
  • Leon D Islas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Sánchez-Moreno et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,060
    views
  • 585
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana Sánchez-Moreno
  2. Eduardo Guevara-Hernández
  3. Ricardo Contreras-Cervera
  4. Gisela Rangel-Yescas
  5. Ernesto Ladrón-de-Guevara
  6. Tamara Rosenbaum
  7. Leon D Islas
(2018)
Irreversible temperature gating in trpv1 sheds light on channel activation
eLife 7:e36372.
https://doi.org/10.7554/eLife.36372

Share this article

https://doi.org/10.7554/eLife.36372

Further reading

    1. Structural Biology and Molecular Biophysics
    Chuchu Wang, Chunyu Zhao ... Cong Liu
    Research Advance

    Previously, we reported that α-synuclein (α-syn) clusters synaptic vesicles (SV) Diao et al., 2013, and neutral phospholipid lysophosphatidylcholine (LPC) can mediate this clustering Lai et al., 2023. Meanwhile, post-translational modifications (PTMs) of α-syn such as acetylation and phosphorylation play important yet distinct roles in regulating α-syn conformation, membrane binding, and amyloid aggregation. However, how PTMs regulate α-syn function in presynaptic terminals remains unclear. Here, based on our previous findings, we further demonstrate that N-terminal acetylation, which occurs under physiological conditions and is irreversible in mammalian cells, significantly enhances the functional activity of α-syn in clustering SVs. Mechanistic studies reveal that this enhancement is caused by the N-acetylation-promoted insertion of α-syn’s N-terminus and increased intermolecular interactions on the LPC-containing membrane. N-acetylation in our work is shown to fine-tune the interaction between α-syn and LPC, mediating α-syn’s role in synaptic vesicle clustering.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Raji E Joseph, Thomas E Wales ... Amy H Andreotti
    Research Advance

    Inhibition of Bruton’s tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders, and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib, and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph et al., 2020). Here, we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.