Abstract

Temperature activated TRP channels or thermoTRPs are among the only proteins that can directly convert temperature changes into changes in channel open probability. In spite of a wealth of functional and structural information, the mechanism of temperature activation remains unknown. We have carefully characterized the repeated activation of TRPV1 by thermal stimuli and discovered a previously unknown inactivation process, which is irreversible. We propose that this form of gating in TRPV1 channels is a consequence of the heat absorption process that leads to channel opening.

Data availability

Summary data for Figures 1, 2, 3, and 4 have been provided as source data files. The electrophysiological recordings will be made available upon request to the corresponding author.

Article and author information

Author details

  1. Ana Sánchez-Moreno

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  2. Eduardo Guevara-Hernández

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  3. Ricardo Contreras-Cervera

    Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  4. Gisela Rangel-Yescas

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  5. Ernesto Ladrón-de-Guevara

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  6. Tamara Rosenbaum

    Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
    Competing interests
    No competing interests declared.
  7. Leon D Islas

    Departamento de Fisiología, Universidad Nacional Autónoma de México, México City, Mexico
    For correspondence
    leon.islas@gmail.com
    Competing interests
    Leon D Islas, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7461-5214

Funding

Consejo Nacional de Ciencia y Tecnología (CB-2015-252644)

  • Leon D Islas

DGAPA-PAPIIT-UNAM (IN209515)

  • Leon D Islas

DGAPA-PAPIITT-UNAM (IN200717)

  • Tamara Rosenbaum

Consejo Nacional de Ciencia y Tecnología (CB-2014-01-238399)

  • Tamara Rosenbaum

Consejo Nacional de Ciencia y Tecnología (Fronteras de la Ciencia 77)

  • Tamara Rosenbaum
  • Leon D Islas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Sánchez-Moreno et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,038
    views
  • 582
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ana Sánchez-Moreno
  2. Eduardo Guevara-Hernández
  3. Ricardo Contreras-Cervera
  4. Gisela Rangel-Yescas
  5. Ernesto Ladrón-de-Guevara
  6. Tamara Rosenbaum
  7. Leon D Islas
(2018)
Irreversible temperature gating in trpv1 sheds light on channel activation
eLife 7:e36372.
https://doi.org/10.7554/eLife.36372

Share this article

https://doi.org/10.7554/eLife.36372

Further reading

    1. Structural Biology and Molecular Biophysics
    Liliana R Teixeira, Radha Akella ... Elizabeth J Goldsmith
    Research Article

    Osmotic stress and chloride regulate the autophosphorylation and activity of the WNK1 and WNK3 kinase domains. The kinase domain of unphosphorylated WNK1 (uWNK1) is an asymmetric dimer possessing water molecules conserved in multiple uWNK1 crystal structures. Conserved waters are present in two networks, referred to here as conserved water networks 1 and 2 (CWN1 and CWN2). Here, we show that PEG400 applied to crystals of dimeric uWNK1 induces de-dimerization. Both the WNK1 the water networks and the chloride-binding site are disrupted by PEG400. CWN1 is surrounded by a cluster of pan-WNK-conserved charged residues. Here, we mutagenized these charges in WNK3, a highly active WNK isoform kinase domain, and WNK1, the isoform best studied crystallographically. Mutation of E314 in the Activation Loop of WNK3 (WNK3/E314Q and WNK3/E314A, and the homologous WNK1/E388A) enhanced the rate of autophosphorylation, and reduced chloride sensitivity. Other WNK3 mutants reduced the rate of autophosphorylation activity coupled with greater chloride sensitivity than wild-type. The water and chloride regulation thus appear linked. The lower activity of some mutants may reflect effects on catalysis. Crystallography showed that activating mutants introduced conformational changes in similar parts of the structure to those induced by PEG400. WNK activating mutations and crystallography support a role for CWN1 in WNK inhibition consistent with water functioning as an allosteric ligand.

    1. Structural Biology and Molecular Biophysics
    Jinsai Shang, Douglas J Kojetin
    Research Advance

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken—but do not prevent—the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.