Measuring NDC80 binding reveals the molecular basis of tension-dependent kinetochore-microtubule attachments

  1. Tae Yeon Yoo  Is a corresponding author
  2. Jeong-Mo Choi
  3. William Conway
  4. Che-Hang Yu
  5. Rohit V Pappu
  6. Daniel J Needleman
  1. Harvard University, United States
  2. Washington University in St. Louis, United States
  3. Washington University in St Louis, United States
7 figures, 2 tables and 1 additional file

Figures

Figure 1 with 5 supplements
FLIM-FRET measurement of NDC80-kMT binding in human tissue culture cells.

(A) Engineered U2OS cell expressing mTurquoise2-NDC80 and β-tubulin-TC-FlAsH. NDC80 (gray), mTurquoise2 (blue) and TC-FlAsH (green). (B) Two-photon microscopy images of the engineered U2OS cells not …

https://doi.org/10.7554/eLife.36392.003
Figure 1—figure supplement 1
β-tubulin labeling fraction measurement.

(A) Two-photon fluorescent microscopy images of 9 mitotic cells with β-tubulin-TC-FlAsH. 5 μm scale bar. (B) Example 3D segmentation using active contour algorithm. (C) (top left) The number of …

https://doi.org/10.7554/eLife.36392.004
Figure 1—figure supplement 2
Kinetochore FLIM-FRET measurement.

(A) Illustration of fluorescence decay acquisition in a TCSPC (time-correlated single photon counting) FLIM system. A Ti:Sapphire pulsed laser is used for excitation and a photomultiplier tube (PMT) …

https://doi.org/10.7554/eLife.36392.005
Figure 1—figure supplement 3
Negative control data for NDC80-kMT FLIM-FRET measurements.

(A) to (D) Schematic descriptions, example cell images, and example mTurquoise2 fluorescence decay curves from three different FRET-negative control experiments and a nocodazole treatment …

https://doi.org/10.7554/eLife.36392.006
Figure 1—figure supplement 4
Förster radius estimation by FLIM-FRET measurements and Monte Carlo protein simulations.

(A) Fluorescence decay curves of cells expressing mTurquoise2-TC in the absence (green circle) and the presence (orange triangle) of FlAsH. A single-exponential model (black solid line) was fit to …

https://doi.org/10.7554/eLife.36392.007
Figure 1—figure supplement 5
Characterization and calibration of NDC80-kMT FLIM-FRET measurement.

(A) The conformational ensemble of the flexible tether between mTurquoise2 and Nuf2 (red) and the disordered C-terminal tails of beta-tubulins around the NDC80 (green) were modeled by large-scale …

https://doi.org/10.7554/eLife.36392.008
NDC80-kMT binding is regulated in a chromosome-autonomous fashion.

(A) Example cell images and time course of NDC80 FRET fraction from prometaphase to metaphase to anaphase (n = 11 cells). Black squares are the mean, y-error bars are the SEM, and x-error bars are …

https://doi.org/10.7554/eLife.36392.009
Figure 3 with 2 supplements
NDC80-kMT binding is correlated with kMT dynamics and centromere tension.

(A) (left) kMTs predominantly depolymerize at leading kinetochores and polymerize at trailing kinetochores. (right) K-K distance is a proxy for centromere tension. Measuring NDC80-kMT binding along …

https://doi.org/10.7554/eLife.36392.010
Figure 3—figure supplement 1
K-K distance and kinetochore velocity are not correlated.

(A) Each data point represents the fraction of leading kinetochores within a group of kinetochores with similar K-K distances. Gray region is the 95% confidence interval of the linear fit. (B) …

https://doi.org/10.7554/eLife.36392.011
Figure 3—figure supplement 2
NDC80 FRET fraction of poleward- and anti-poleward-facing kinetochores in STLC-treated cells with monopolar spindles.

NDC80 FRET fraction vs. K-K distance for poleward-facing kinetochores (purple square, same as Figure 3D) and anti-poleward-facing kinetochores (pink triangles) in cells treated with 5 μM STLC (n = 16…

https://doi.org/10.7554/eLife.36392.012
Figure 4 with 1 supplement
Aurora B kinase regulates NDC80-kMT binding in a graded fashion in vivo.

(A) (top) Cell images showing mTurquoise2-NDC80 (blue) and beta-tubulin-TC-FlAsH (green). (bottom) Time course of NDC80 FRET fraction in response to Aurora B inhibition by 3 μM ZM447439 (n = 15 …

https://doi.org/10.7554/eLife.36392.013
Figure 4—figure supplement 1
Supplemental data for Aurora B inhibition experiments.

(A) Time course of NDC80 FRET fraction in response to 0.03% DMSO (n = 5 cells, negative control for Figure 4A). (B) The design of Aurora B FRET biosensor. The FRET sensor contains a kinesin-13 …

https://doi.org/10.7554/eLife.36392.014
Figure 5 with 1 supplement
Haspin-dependent centromere-localized Aurora B is responsible for the tension dependency of NDC80-kMT binding.

(A) NDC80 FRET fraction vs. K-K distance for 9A-Hec1-expressing cells with no drug treatment (green circle, n = 12 cells, 803 kinetochores/data point), with 10 μM taxol treatment (orange triangle, n …

https://doi.org/10.7554/eLife.36392.015
Figure 5—figure supplement 1
NDC80 FRET fraction of poleward and anti-poleward kinetochores in STLC-induced monopolar spindles of 9A-Hec1-expressing cells and haspin inhibited cells.

NDC80 FRET fraction vs. K-K distance for poleward-facing kinetochores (purple squares, same as Figure 5) and anti-poleward-facing kinetochores (pink triangles) in (A) 9A-Hec1-expressing cells …

https://doi.org/10.7554/eLife.36392.016
The concentration of Aurora B at the location of NDC80 decreases with centromere tension.

(A) Spinning-disk confocal microscopy image of mNeonGreen-Nuf2 (green) and INCENP-mCherry (red). 3 µm scale bar. The location of NDC80 was determined to sub-pixel accuracy, using the mNeonGreen-Nuf2 …

https://doi.org/10.7554/eLife.36392.017
A biophysical model of tension dependent NDC80-kMT binding.

(A) Plot of NDC80 binding fraction, fbound, (converted from NDC80 FRET fraction in Figures 3D and 5E) vs. Aurora B concentration at NDC80, [A] (converted from INCENP-mCherry intensity in Figure 6B, …

https://doi.org/10.7554/eLife.36392.018

Tables

Key resources table
Reagent type (species)
or resource
DesignationSource or referenceIdentifiersAdditional information
Cell line
(Homo sapiens)
U2OSATCCHTB-96
Transfected construct
(Homo sapiens)
pBABE-puro
mTurquoise2-Nuf2
this paperNuf2 N-terminally labeled with
mTurquoise2; in retroviral vector
with puromycin selection marker
Transfected construct
(Homo sapiens)
pBABE-hygro
mTurquoise2-Nuf2
this paperSame as above, but with hygromycin
selection marker
Transfected construct
(Homo sapiens)
pBABE-blast
mTurquoise2-Nuf2
this paperSame as above, but with blasticidin
marker
Transfected construct
(Homo sapiens)
pBABE-blast Aurora
B FRET sensor
(mTurquoise2/YPet)
this papermodified from Addgene #45215;
Fuller et al. (2008)
Transfected construct
(Homo sapiens)
Nuf2-targeted Aurora
B FRET sensor
(mTurquoise2/Ypet)
this papermodified from Addgene #45215;
Fuller et al. (2008)
Transfected construct
(Homo sapiens)
mTurquoise2-TCthis papermTurquoise2 with tetracysteine
motif at the C-terminus
Transfected construct
(Homo sapiens)
WT-Hec1-LSSmOrangethis papermodified from WT-Hec1-GFP
from Jennifer DeLuca
Transfected construct
(Homo sapiens)
9A-Hec1-LSSmOrangethis papermodified from 9A-Hec1-GFP
from Jennifer DeLuca
Transfected construct
(Homo sapiens)
2D(S44,55D)-Hec1
-LSSmOrange
this papermodified from 2D-Hec1-GFP
from Jennifer DeLuca
Transfected construct
(Homo sapiens)
9D-Hec1-LSSmOrangethis papermodified from 9D-Hec1-GFP
from Jennifer DeLuca
Transfected construct
(Homo sapiens)
INCENP-mCherryotherGift from Michael Lampson
Recombinant DNA
reagent
pSpCas9(BB)−2A-GFP
(pX458)
Ran et al. (2013)Addgene: #48138
Sequence-based
reagent
Donor single-stranded DNA
for TC tag insertion at the
C-terminus of TUBB
IDTssDNA: cgtctctgagtatcagcagtacca
ggatgccaccgcagaagaggaggaggattt
cggtgaggaggccgaagaggaggcctGCT
GTCCCGGCTGTTGctaaggcagagcccc
catcacctcaggcttctcagttcccttagccgtc
ttactcaactgcccctttcctctccctcaga;
sgRNA target sequence: GAGGCCGAA
GAGGAGGCCTA
Sequence-based
reagent
Hec1 siRNAQiagenCat#: SI02653567
Peptide, recombinant
protein
TC-peptideGenscriptCustom designedSynthesized, Ac-AEEEACCPGCC-NH2
Commercial assay
or kit
Amaxa Cell Line
Nucleofector Kit V
LonzaCat#:VCA-1003
Commercial assay
or kit
Ingenio Electroporation
Kit
MirusCat#: MIR 50118
Commercial assay
or kit
Lipofectamine RNAiMaxThermo FisherCat#:13778075
Chemical compound,
drug
FlAsH-EDT2Thermo FisherCat#:T34561
Chemical compound,
drug
1,2-Ethanedithiol (EDT)Alfa AesarCat#:540-63-6
Chemical compound,
drug
ZM447439Enzo Life SciencesCat#:BML-EI373
Chemical compound,
drug
Paclitaxel (Taxol)Enzo Life SciencesCat#:BML-T104
Chemical compound,
drug
5-iodotubercidin (5-ITu)Enzo Life SciencesCat#:BML-EI29
Chemical compound,
drug
S-Trityl-L-cysteineSigma AldrichCat#:164739–5G
Chemical compound,
drug
Alexa Fluor 488Thermo FisherCat#:A20000
Chemical compound,
drug
Sodium 2-
mercaptoethanesulfonate
Sigma AldrichCat#:M1511
Software, algorithmInteractive kinetochore
FLIM-FRET analysis
GUI (MATLAB 2016)
This paperhttp://doi.org/10.5281/zenodo.1198705;
copy archived at https://github.com/elifesciences-publications/FLIM-Interactive-Data-Analysis
Software, algorithmAurora B concentration at
NDC80 analysis (Python 3)
This paperhttp://doi.org/10.5281/zenodo.1198702;copy archived at https://github.com/elifesciences-publications/AuroraConcentrationAnalysis
Software, algorithmCAMPARI (v2)Pappu Labhttp://campari.sourceforge.net/V2/index.html
Software, algorithmRosetta 3.8RosettaCommonsRRID:SCR_015701
Other25 mm #1.5 poly-D-lysine
coated round coverglass
neuVitroCat#:GG-25–1.5-pdl
OtherFluoroBrite DMEMThermo FisherCat#:A1896701
OtherMicrotubule structureZhang et al. (2015)PDB 3JAS
OtherHuman NDC80 bonsai
decorated tubulin dimer
Alushin et al. (2010)PDB 3IZ0
OthermTurquoise structureStetten et al.
(unpublished)
PDB 4B5Y
Table 1
https://doi.org/10.7554/eLife.36392.019
FigureParameterMean95% CI
4AA0.088(0.069,0.106)
τ (min)3.26(1.31,5.21)
c0.089(0.080,0.099)
4DA0.024(0.011,0.038)
τ (min)0.50(−0.70,1.71)
c0.059(0.048,0.071)
4EA0.17(0.16,0.18)
τ (min)1.95(1.46,2.45)
c0.37(0.36,0.38)
4-S1DA0.076(0.061,0.090)
τ (min)1.12(0.23,2.00)
c0.56(0.55,0.57)

Additional files

Download links