Measuring NDC80 binding reveals the molecular basis of tension-dependent kinetochore-microtubule attachments

  1. Tae Yeon Yoo  Is a corresponding author
  2. Jeong-Mo Choi
  3. William Conway
  4. Che-Hang Yu
  5. Rohit V Pappu
  6. Daniel J Needleman
  1. Harvard University, United States
  2. Washington University in St Louis, United States

Abstract

Proper kinetochore-microtubule attachments, mediated by the NDC80 complex, are required for error-free chromosome segregation. Erroneous attachments are corrected by the tension dependence of kinetochore-microtubule interactions. Here, we present a method, based on fluorescence lifetime imaging microscopy and Förster resonance energy transfer, to quantitatively measure the fraction of NDC80 complexes bound to microtubules at individual kinetochores in living human cells. We found that NDC80 binding is modulated in a chromosome autonomous fashion over prometaphase and metaphase, and is predominantly regulated by centromere tension. We show that this tension dependency requires phosphorylation of the N-terminal tail of Hec1, a component of the NDC80 complex, and the proper localization of Aurora B kinase, which modulates NDC80 binding. Our results lead to a mathematical model of the molecular basis of tension-dependent NDC80 binding to kinetochore microtubules in vivo.

Data availability

- All microscopy image data and data points in the presented plots have been deposited in Dryad (DOI: https://doi.org/10.5061/dryad.14rr125)- Analysis codes are deposited in Github, where doi's are provided in the manuscript.

The following data sets were generated

Article and author information

Author details

  1. Tae Yeon Yoo

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    taeyeon_yoo@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8145-1051
  2. Jeong-Mo Choi

    Department of Biomedical Engineering, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2656-4851
  3. William Conway

    Department of Physics, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Che-Hang Yu

    John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0353-9752
  5. Rohit V Pappu

    Department of Biomedical Engineering, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2568-1378
  6. Daniel J Needleman

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Science Foundation (DBI-0959721)

  • Daniel J Needleman

National Institutes of Health (R01NS056114)

  • Rohit V Pappu

National Science Foundation (DMR-0820484)

  • Daniel J Needleman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Trisha N Davis, University of Washington, United States

Version history

  1. Received: March 5, 2018
  2. Accepted: July 24, 2018
  3. Accepted Manuscript published: July 25, 2018 (version 1)
  4. Version of Record published: August 13, 2018 (version 2)
  5. Version of Record updated: August 15, 2018 (version 3)
  6. Version of Record updated: August 23, 2018 (version 4)

Copyright

© 2018, Yoo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,069
    Page views
  • 567
    Downloads
  • 42
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tae Yeon Yoo
  2. Jeong-Mo Choi
  3. William Conway
  4. Che-Hang Yu
  5. Rohit V Pappu
  6. Daniel J Needleman
(2018)
Measuring NDC80 binding reveals the molecular basis of tension-dependent kinetochore-microtubule attachments
eLife 7:e36392.
https://doi.org/10.7554/eLife.36392

Share this article

https://doi.org/10.7554/eLife.36392

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.