Model-based fMRI reveals dissimilarity processes underlying base rate neglect
Abstract
Extensive evidence suggests that people use base rate information inconsistently in decision making. A classic example is the inverse base rate effect (IBRE), whereby participants classify ambiguous stimuli sharing features of both common and rare categories as members of the rare category. Computational models of the IBRE have either posited that it arises from associative similarity-based mechanisms or dissimilarity-based processes that may depend upon higher-level inference. Here we develop a hybrid model, which posits that similarity- and dissimilarity-based evidence both contribute to the IBRE, and test it using functional magnetic resonance imaging data collected from human subjects completing an IBRE task. Consistent with our model, multivoxel pattern analysis reveals that activation patterns on ambiguous test trials contain information consistent with dissimilarity-based processing. Further, trial-by-trial activation in left rostrolateral prefrontal cortex tracks model-based predictions for dissimilarity-based processing, consistent with theories positing a role for higher-level symbolic processing in the IBRE.
Data availability
Source data and scripts used to create all figures and tables (e.g., R code, PyMVPA scripts, statistical maps for the model-based fMRI analysis) are posted to a publicly available online repository (Open Science Framework: https://osf.io/atbz7/). Raw fMRI data for the study organized according to Brain Imaging Data Structure (BIDS) guidelines are available at https://openneuro.org/datasets/ds001302.
Article and author information
Author details
Funding
Texas Tech University
- Tyler Davis
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Subjects provided written informed consent before taking part in the study, and all procedures involving human subjects were approved by the Texas Tech University Institutional Review Board.
Copyright
© 2018, O'Bryan et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,091
- views
-
- 139
- downloads
-
- 10
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.
-
- Neuroscience
Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.