Abstract

Cognitive and social capacities require postnatal experience, yet the pathways by which experience guides development are unknown. Here we show that the normal development of motor and nonmotor capacities requires cerebellar activity. Using chemogenetic perturbation of molecular layer interneurons to attenuate cerebellar output in mice, we found that activity of posterior regions in juvenile life modulates adult expression of eyeblink conditioning (paravermal lobule VI, crus I), reversal learning (lobule VI), persistive behavior and novelty-seeking (lobule VII), and social preference (crus I/II). Perturbation in adult life altered only a subset of phenotypes. Both adult and juvenile disruption left gait metrics largely unaffected. Contributions to phenotypes increased with the amount of lobule inactivated. Using an anterograde transsynaptic tracer, we found that posterior cerebellum made strong connections with prelimbic, orbitofrontal, and anterior cingulate cortex. These findings provide anatomical substrates for the clinical observation that cerebellar injury increases the risk of autism.

Data availability

Code and data for the main figures are available via the GitHub repository https://github.com/wanglabprinceton/behavioral-development.The complete raw data for this study are available from the corresponding author upon request (including behavioral videos and serial two-photon tomographic brain images of each mouse).

Article and author information

Author details

  1. Aleksandra Badura

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jessica L Verpeut

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Julia M Metzger

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Talmo D Pereira

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9075-8365
  5. Thomas J Pisano

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ben Deverett

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3119-7649
  7. Dariya E Bakshinskaya

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Samuel S-H Wang

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    sswang@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0490-9786

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Innovational Research Incentives Scheme VENI (NWO ZonMw))

  • Aleksandra Badura

Nancy Lurie Marks Family Foundation

  • Samuel S-H Wang

National Institutes of Health (R01 NS045193)

  • Samuel S-H Wang

New Jersey Commission on Brain Injury Research (CBIR16FEL010)

  • Jessica L Verpeut

National Science Foundation (Graduate Research Fellowship DGE-1148900)

  • Talmo D Pereira

Rutgers Robert Wood Johnson Medical School-Princeton University M.D.-Ph.D. Program

  • Thomas J Pisano
  • Ben Deverett

National Institutes of Health (R01 MH115750)

  • Samuel S-H Wang

National Institutes of Health (F30 MH115577)

  • Ben Deverett

National Institutes of Health (F31 NS089303)

  • Thomas J Pisano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Experimental procedures were approved by the Princeton University Institutional Animal Care and Use Committee (protocol number: 1943-16) and performed in accordance with the animal welfare guidelines of the National Institutes of Health. All mice were housed in Optimice cages (Animal Care Systems, Centennial, CO) containing blended bedding (The Andersons, Maumee, OH), paper nesting strips, and one heat-dried virgin pulp cardboard hut (Shepherd Specialty Papers, Milford, NJ). PicoLab Rodent Diet food pellets (LabDiet, St. Louis, MO) and drinking water (or CNO water in the developmental groups) were provided ad libitum. Mice were relocated to clean cages with new component materials every two weeks. All mice were group-housed in reverse light cycle to promote maximal performance during behavioral testing. All surgery was performed under isoflurane anesthesia (5% for induction, 1-2% in oxygen; 1 L/min) and daily monitoring was employed to minimize suffering.

Copyright

© 2018, Badura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,326
    views
  • 1,088
    downloads
  • 152
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aleksandra Badura
  2. Jessica L Verpeut
  3. Julia M Metzger
  4. Talmo D Pereira
  5. Thomas J Pisano
  6. Ben Deverett
  7. Dariya E Bakshinskaya
  8. Samuel S-H Wang
(2018)
Normal cognitive and social development require posterior cerebellar activity
eLife 7:e36401.
https://doi.org/10.7554/eLife.36401

Share this article

https://doi.org/10.7554/eLife.36401

Further reading

    1. Neuroscience
    Rituja S Bisen, Fathima Mukthar Iqbal ... Jan M Ache
    Research Article

    Insulin plays a key role in metabolic homeostasis. Drosophila insulin-producing cells (IPCs) are functional analogues of mammalian pancreatic beta cells and release insulin directly into circulation. To investigate the in vivo dynamics of IPC activity, we quantified the effects of nutritional and internal state changes on IPCs using electrophysiological recordings. We found that the nutritional state strongly modulates IPC activity. IPC activity decreased with increasing periods of starvation. Refeeding flies with glucose or fructose, two nutritive sugars, significantly increased IPC activity, whereas non-nutritive sugars had no effect. In contrast to feeding, glucose perfusion did not affect IPC activity. This was reminiscent of the mammalian incretin effect, where glucose ingestion drives higher insulin release than intravenous application. Contrary to IPCs, Diuretic hormone 44-expressing neurons in the pars intercerebralis (DH44PINs) responded to glucose perfusion. Functional connectivity experiments demonstrated that these DH44PINs do not affect IPC activity, while other DH44Ns inhibit them. Hence, populations of autonomously and systemically sugar-sensing neurons work in parallel to maintain metabolic homeostasis. Accordingly, activating IPCs had a small, satiety-like effect on food-searching behavior and reduced starvation-induced hyperactivity, whereas activating DH44Ns strongly increased hyperactivity. Taken together, we demonstrate that IPCs and DH44Ns are an integral part of a modulatory network that orchestrates glucose homeostasis and adaptive behavior in response to shifts in the metabolic state.

    1. Neuroscience
    Yichun Shuai, Megan Sammons ... Yoshinori Aso
    Tools and Resources

    The mushroom body (MB) is the center for associative learning in insects. In Drosophila, intersectional split-GAL4 drivers and electron microscopy (EM) connectomes have laid the foundation for precise interrogation of the MB neural circuits. However, investigation of many cell types upstream and downstream of the MB has been hindered due to lack of specific driver lines. Here we describe a new collection of over 800 split-GAL4 and split-LexA drivers that cover approximately 300 cell types, including sugar sensory neurons, putative nociceptive ascending neurons, olfactory and thermo-/hygro-sensory projection neurons, interneurons connected with the MB-extrinsic neurons, and various other cell types. We characterized activation phenotypes for a subset of these lines and identified a sugar sensory neuron line most suitable for reward substitution. Leveraging the thousands of confocal microscopy images associated with the collection, we analyzed neuronal morphological stereotypy and discovered that one set of mushroom body output neurons, MBON08/MBON09, exhibits striking individuality and asymmetry across animals. In conjunction with the EM connectome maps, the driver lines reported here offer a powerful resource for functional dissection of neural circuits for associative learning in adult Drosophila.