1. Neuroscience
  2. Physics of Living Systems
Download icon

Temporal processing and context dependency in C. elegans response to mechanosensation

  1. Mochi Liu
  2. Anuj Kumar Sharma
  3. Josh Shaevitz
  4. Andrew Michael Leifer  Is a corresponding author
  1. Princeton University, United States
Research Article
  • Cited 23
  • Views 3,290
  • Annotations
Cite this article as: eLife 2018;7:e36419 doi: 10.7554/eLife.36419

Abstract

A quantitative understanding of how sensory signals are transformed into motor outputs places useful constraints on brain function and helps reveal the brain's underlying computations. We investigate how the nematode C. elegans responds to time-varying mechanosensory signals using a high-throughput optogenetic assay and automated behavior quantification. We find that the behavioral response is tuned to temporal properties of mechanosensory signals, like its integral and derivative, that extend over many seconds. Mechanosensory signals, even in the same neurons, can be tailored to elicit different behavioral responses. Moreover, we find that the animal's response also depends on its behavioral context. Most dramatically, the animal ignores all tested mechanosensory stimuli during turns. Finally, we present a linear-nonlinear model that predicts the animal's behavioral response to stimulus.

Data availability

Stimulus and behavior data has been made publicly available on Figshare https://doi.org/10.6084/m9.figshare.5956348 . Raw imaging data (2TB) has been made publicly available on IEEE DataPorts http://dx.doi.org/10.21227/H27944 .

The following data sets were generated

Article and author information

Author details

  1. Mochi Liu

    Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Anuj Kumar Sharma

    Department of Physics, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5061-9731
  3. Josh Shaevitz

    Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Andrew Michael Leifer

    Department of Physics, Princeton University, Princeton, United States
    For correspondence
    leifer@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5362-5093

Funding

Simons Foundation (SCGB #324285)

  • Andrew Michael Leifer

National Institutes of Health (National Human Genome Research Institute Award Number T32HG003284)

  • Mochi Liu

Princeton University (Dean for Research Innovation Fund)

  • Josh Shaevitz
  • Andrew Michael Leifer

Simons Foundation (SCGB #543003)

  • Andrew Michael Leifer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy O'Leary, University of Cambridge, United Kingdom

Publication history

  1. Received: March 6, 2018
  2. Accepted: June 10, 2018
  3. Accepted Manuscript published: June 26, 2018 (version 1)
  4. Version of Record published: July 20, 2018 (version 2)

Copyright

© 2018, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,290
    Page views
  • 426
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Katherine B LeClair et al.
    Research Article

    Social hierarchy formation is strongly evolutionarily conserved. Across species, rank within social hierarchy has large effects on health and behavior. To investigate the relationship between social rank and stress susceptibility, we exposed ranked male and female mice to social and non-social stressors and manipulated social hierarchy position. We found that rank predicts same sex social stress outcomes: dominance in males and females confers resilience while subordination confers susceptibility. Pre-existing rank does not predict non-social stress outcomes in females and weakly does so in males, but rank emerging under stress conditions reveals social interaction deficits in male and female subordinates. Both history of winning and rank of cage mates affect stress susceptibility in males: rising to the top rank through high mobility confers resilience and mice that lose dominance lose stress resilience, though gaining dominance over a subordinate animal does not confer resilience. Overall, we have demonstrated a relationship between social status and stress susceptibility, particularly when taking into account individual history of winning and the overall hierarchy landscape in male and female mice.

    1. Cell Biology
    2. Neuroscience
    Zhong-Jiao Jiang et al.
    Research Article

    TRPM7 contributes to a variety of physiological and pathological processes in many tissues and cells. With a widespread distribution in the nervous system, TRPM7 is involved in animal behaviors and neuronal death induced by ischemia. However, the physiological role of TRPM7 in CNS neuron remains unclear. Here, we identify endocytic defects in neuroendocrine cells and neurons from TRPM7 knockout (KO) mice, indicating a role of TRPM7 in synaptic vesicle endocytosis. Our experiments further pinpoint the importance of TRPM7 as an ion channel in synaptic vesicle endocytosis. Ca2+ imaging detects a defect in presynaptic Ca2+ dynamics in TRPM7 KO neuron, suggesting an importance of Ca2+ influx via TRPM7 in synaptic vesicle endocytosis. Moreover, the short-term depression is enhanced in both excitatory and inhibitory synaptic transmission from TRPM7 KO mice. Taken together, our data suggests that Ca2+ influx via TRPM7 may be critical for short-term plasticity of synaptic strength by regulating synaptic vesicle endocytosis in neurons.