A facile approach for the in vitro assembly of multimeric membrane transport proteins

  1. Erika A Riederer
  2. Paul J Focke
  3. Elka R Georgieva
  4. Nurunisa Akyuz
  5. Kimberly Matulef
  6. Peter P Borbat
  7. Jack H Freed
  8. Scott C Blanchard
  9. Olga Boudker
  10. Francis I Valiyaveetil  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Cornell University, United States
  3. Weill Cornell Medicine, United States

Abstract

Membrane proteins such as ion channels and transporters are frequently homomeric. The homomeric nature raises important questions regarding coupling between subunits and complicates the application of techniques such as FRET or DEER spectroscopy. These challenges can be overcome if the subunits of a homomeric protein can be independently modified for functional or spectroscopic studies. Here, we describe a general approach for in vitro assembly that can be used for the generation of heteromeric variants of homomeric membrane proteins. We establish the approach using GltPh, a glutamate transporter homolog that is trimeric in the native state. We use heteromeric GltPh transporters to directly demonstrate the lack of coupling in substrate binding and demonstrate how heteromeric transporters considerably simplify the application of DEER spectroscopy. Further, we demonstrate the general applicability of this approach by carrying out the in vitro assembly of VcINDY, a Na+-coupled succinate transporter and CLC-ec1, a Cl-/H+ antiporter.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Erika A Riederer

    Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1011-6536
  2. Paul J Focke

    Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, United States
    Competing interests
    No competing interests declared.
  3. Elka R Georgieva

    Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  4. Nurunisa Akyuz

    Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
  5. Kimberly Matulef

    Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5011-9064
  6. Peter P Borbat

    Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  7. Jack H Freed

    Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
    Competing interests
    No competing interests declared.
  8. Scott C Blanchard

    Weill Cornell Medicine, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2717-9365
  9. Olga Boudker

    Weill Cornell Medicine, New York, United States
    Competing interests
    Olga Boudker, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6965-0851
  10. Francis I Valiyaveetil

    Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, United States
    For correspondence
    valiyave@ohsu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3387-8018

Funding

National Institute of General Medical Sciences (R01 GM087546)

  • Francis I Valiyaveetil

Howard Hughes Medical Institute

  • Olga Boudker

National Institute of Neurological Disorders and Stroke (R37 NS085318)

  • Scott C Blanchard
  • Olga Boudker
  • Francis I Valiyaveetil

National Institute of General Medical Sciences (P41GM103521)

  • Jack H Freed

American Heart Association (12POST1910068)

  • Paul J Focke

National Institute of General Medical Sciences (R01 GM123779)

  • Elka R Georgieva
  • Jack H Freed

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kenton Jon Swartz, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States

Version history

  1. Received: March 7, 2018
  2. Accepted: June 8, 2018
  3. Accepted Manuscript published: June 11, 2018 (version 1)
  4. Version of Record published: June 29, 2018 (version 2)

Copyright

© 2018, Riederer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,493
    views
  • 410
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erika A Riederer
  2. Paul J Focke
  3. Elka R Georgieva
  4. Nurunisa Akyuz
  5. Kimberly Matulef
  6. Peter P Borbat
  7. Jack H Freed
  8. Scott C Blanchard
  9. Olga Boudker
  10. Francis I Valiyaveetil
(2018)
A facile approach for the in vitro assembly of multimeric membrane transport proteins
eLife 7:e36478.
https://doi.org/10.7554/eLife.36478

Share this article

https://doi.org/10.7554/eLife.36478

Further reading

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.