NSF-mediated disassembly of on and off-pathway SNARE complexes and inhibition by complexin

  1. Ucheor B Choi
  2. Minglei Zhao
  3. K Ian White
  4. Richard A Pfuetzner
  5. Luis Esquivies
  6. Qiangjun Zhou
  7. Axel T Brunger  Is a corresponding author
  1. Stanford University, United States
  2. University of Chicago, United States

Abstract

SNARE complex disassembly by the ATPase NSF is essential for neurotransmitter release and other membrane trafficking processes. We developed a single molecule FRET assay to monitor repeated rounds of NSF-mediated disassembly and reassembly of individual SNARE complexes. For ternary neuronal SNARE complexes, disassembly proceeds in a single step within 100 msec. We observed short- (< 0.32 sec) and long-lived ({greater than or equal to} 0.32 sec) disassembled states. The long-lived states represent fully disassembled SNARE complex, while the short-lived states correspond to failed disassembly or immediate re-assembly. Either high ionic strength or decreased αSNAP concentration reduces the disassembly rate while increasing the frequency of short-lived states. NSF is also capable of disassembling anti-parallel ternary SNARE complexes, suggesting a role in quality control. Finally, complexin-1 competes with αSNAP binding to the SNARE complex; addition of complexin-1 has an effect similar to that of decreasing the αSNAP concentration, suggesting a possible regulatory role in disassembly.

Data availability

The EM map associated with this paper has been deposited in the wwPDB under the accession number EMD-8944.

The following data sets were generated

Article and author information

Author details

  1. Ucheor B Choi

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Minglei Zhao

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  3. K Ian White

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Richard A Pfuetzner

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Luis Esquivies

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Qiangjun Zhou

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1789-9588
  7. Axel T Brunger

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    For correspondence
    brunger@stanford.edu
    Competing interests
    Axel T Brunger, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5121-2036

Funding

National Institutes of Health (R37MH63105)

  • Axel T Brunger

Howard Hughes Medical Institute

  • Axel T Brunger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Choi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,414
    views
  • 459
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ucheor B Choi
  2. Minglei Zhao
  3. K Ian White
  4. Richard A Pfuetzner
  5. Luis Esquivies
  6. Qiangjun Zhou
  7. Axel T Brunger
(2018)
NSF-mediated disassembly of on and off-pathway SNARE complexes and inhibition by complexin
eLife 7:e36497.
https://doi.org/10.7554/eLife.36497

Share this article

https://doi.org/10.7554/eLife.36497

Further reading

    1. Microbiology and Infectious Disease
    Tao Tang, Weiming Zhong ... Zhipeng Gao
    Research Article

    Saprolegnia parasitica is one of the most virulent oomycete species in freshwater aquatic environments, causing severe saprolegniasis and leading to significant economic losses in the aquaculture industry. Thus far, the prevention and control of saprolegniasis face a shortage of medications. Linalool, a natural antibiotic alternative found in various essential oils, exhibits promising antimicrobial activity against a wide range of pathogens. In this study, the specific role of linalool in protecting S. parasitica infection at both in vitro and in vivo levels was investigated. Linalool showed multifaceted anti-oomycetes potential by both of antimicrobial efficacy and immunomodulatory efficacy. For in vitro test, linalool exhibited strong anti-oomycetes activity and mode of action included: (1) Linalool disrupted the cell membrane of the mycelium, causing the intracellular components leak out; (2) Linalool prohibited ribosome function, thereby inhibiting protein synthesis and ultimately affecting mycelium growth. Surprisingly, meanwhile we found the potential immune protective mechanism of linalool in the in vivo test: (1) Linalool enhanced the complement and coagulation system which in turn activated host immune defense and lysate S. parasitica cells; (2) Linalool promoted wound healing, tissue repair, and phagocytosis to cope with S. parasitica infection; (3) Linalool positively modulated the immune response by increasing the abundance of beneficial Actinobacteriota; (4) Linalool stimulated the production of inflammatory cytokines and chemokines to lyse S. parasitica cells. In all, our findings showed that linalool possessed multifaceted anti-oomycetes potential which would be a promising natural antibiotic alternative to cope with S. parasitica infection in the aquaculture industry.

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Iti Mehta, Jacob B Hogins ... Larry Reitzer
    Research Article

    Polyamines are biologically ubiquitous cations that bind to nucleic acids, ribosomes, and phospholipids and, thereby, modulate numerous processes, including surface motility in Escherichia coli. We characterized the metabolic pathways that contribute to polyamine-dependent control of surface motility in the commonly used strain W3110 and the transcriptome of a mutant lacking a putrescine synthetic pathway that was required for surface motility. Genetic analysis showed that surface motility required type 1 pili, the simultaneous presence of two independent putrescine anabolic pathways, and modulation by putrescine transport and catabolism. An immunological assay for FimA—the major pili subunit, reverse transcription quantitative PCR of fimA, and transmission electron microscopy confirmed that pili synthesis required putrescine. Comparative RNAseq analysis of a wild type and ΔspeB mutant which exhibits impaired pili synthesis showed that the latter had fewer transcripts for pili structural genes and for fimB which codes for the phase variation recombinase that orients the fim operon promoter in the ON phase, although loss of speB did not affect the promoter orientation. Results from the RNAseq analysis also suggested (a) changes in transcripts for several transcription factor genes that affect fim operon expression, (b) compensatory mechanisms for low putrescine which implies a putrescine homeostatic network, and (c) decreased transcripts of genes for oxidative energy metabolism and iron transport which a previous genetic analysis suggests may be sufficient to account for the pili defect in putrescine synthesis mutants. We conclude that pili synthesis requires putrescine and putrescine concentration is controlled by a complex homeostatic network that includes the genes of oxidative energy metabolism.