Differential expression of Lutheran/BCAM regulates biliary tissue remodeling in ductular reaction during liver regeneration

  1. Yasushi Miura
  2. Satoshi Matsui
  3. Naoko Miyata
  4. Kenichi Harada
  5. Yamato Kikkawa
  6. Masaki Ohmuraya
  7. Kimi Araki
  8. Shinya Tsurusaki
  9. Hitoshi Okochi
  10. Nobuhito Goda
  11. Atsushi Miyajima
  12. Minoru Tanaka  Is a corresponding author
  1. National Center for Global Health and Medicine, Japan
  2. Kanazawa University, Japan
  3. Tokyo University of Pharmacy and Life Sciences, Japan
  4. Hyogo College of Medicine, Japan
  5. Kumamoto University, Japan
  6. Waseda University, Japan
  7. The University of Tokyo, Japan

Abstract

Under chronic or severe liver injury, liver progenitor cells (LPCs) of biliary origin are known to expand and contribute to the regeneration of hepatocytes and cholangiocytes. This regeneration process is called ductular reaction (DR), which is accompanied by dynamic remodeling of biliary tissue. Although the DR shows apparently distinct mode of biliary extension depending on the type of liver injury, the key regulatory mechanism remains poorly understood. Here, we show that Lutheran (Lu)/Basal cell adhesion molecule (BCAM) regulates the morphogenesis of DR depending on liver disease models. Lu+ and Lu- biliary cells isolated from injured liver exhibit opposite phenotypes in cell motility and duct formation capacities in vitro. By overexpression of Lu, Lu- biliary cells acquire the phenotype of Lu+ biliary cells. Lu-deficient mice showed severe defects in DR. Our findings reveal a critical role of Lu in the control of phenotypic heterogeneity of DR in distinct liver disease models.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3,4,5, 6 and Supporting figure 5.

Article and author information

Author details

  1. Yasushi Miura

    Department of Regenerative Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Satoshi Matsui

    Department of Regenerative Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Naoko Miyata

    Department of Regenerative Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Kenichi Harada

    Department of Human Pathology, Kanazawa University, Kanazawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yamato Kikkawa

    Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Masaki Ohmuraya

    Department of Genetics, Hyogo College of Medicine, Hyogo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Kimi Araki

    Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Shinya Tsurusaki

    Department of Regenerative Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Hitoshi Okochi

    Department of Regenerative Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Nobuhito Goda

    Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Atsushi Miyajima

    Laboratory of Cell Growth and Differentiation, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Minoru Tanaka

    Department of Regenerative Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    For correspondence
    m-tanaka@ri.ncgm.go.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2500-7973

Funding

Japan Society for the Promotion of Science (26110007)

  • Minoru Tanaka

Japan Society for the Promotion of Science (26253023)

  • Atsushi Miyajima

Japan Society for the Promotion of Science (26110001)

  • Masaki Ohmuraya

Japan Agency for Medical Research and Development (JP17be0304201)

  • Minoru Tanaka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed according to institutional guidelines and approved by the Animal Care and Use committee of the Institute of Molecular and Cellular Biosciences, The University of Tokyo (approval numbers 2501, 2501-1, 2609,2706 and 3004), Kumatomo University (approval number A27-092), Hyogo College of Medicine (approval number 16-043, 16-046), and National Center for Global Health and Medicine Research Institute (approval number 15080, 16023, 17086 and 18069). Every effort was made to minimize animal suffering and to reduce the number of animals used.

Human subjects: The study using human samples was approved by the Kanazawa University Ethics Committee (approval number 305-4), and all of the analyzed samples are derived from patients who provided informed written consent for the use of their tissue samples in research.

Copyright

© 2018, Miura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,762
    views
  • 270
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasushi Miura
  2. Satoshi Matsui
  3. Naoko Miyata
  4. Kenichi Harada
  5. Yamato Kikkawa
  6. Masaki Ohmuraya
  7. Kimi Araki
  8. Shinya Tsurusaki
  9. Hitoshi Okochi
  10. Nobuhito Goda
  11. Atsushi Miyajima
  12. Minoru Tanaka
(2018)
Differential expression of Lutheran/BCAM regulates biliary tissue remodeling in ductular reaction during liver regeneration
eLife 7:e36572.
https://doi.org/10.7554/eLife.36572

Share this article

https://doi.org/10.7554/eLife.36572

Further reading

    1. Developmental Biology
    Eric R Brooks, Andrew R Moorman ... Jennifer A Zallen
    Tools and Resources

    The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.

    1. Developmental Biology
    Mehmet Mahsum Kaplan, Erika Hudacova ... Ondrej Machon
    Research Article

    Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.