Differential expression of Lutheran/BCAM regulates biliary tissue remodeling in ductular reaction during liver regeneration

  1. Yasushi Miura
  2. Satoshi Matsui
  3. Naoko Miyata
  4. Kenichi Harada
  5. Yamato Kikkawa
  6. Masaki Ohmuraya
  7. Kimi Araki
  8. Shinya Tsurusaki
  9. Hitoshi Okochi
  10. Nobuhito Goda
  11. Atsushi Miyajima
  12. Minoru Tanaka  Is a corresponding author
  1. National Center for Global Health and Medicine, Japan
  2. Kanazawa University, Japan
  3. Tokyo University of Pharmacy and Life Sciences, Japan
  4. Hyogo College of Medicine, Japan
  5. Kumamoto University, Japan
  6. Waseda University, Japan
  7. The University of Tokyo, Japan

Abstract

Under chronic or severe liver injury, liver progenitor cells (LPCs) of biliary origin are known to expand and contribute to the regeneration of hepatocytes and cholangiocytes. This regeneration process is called ductular reaction (DR), which is accompanied by dynamic remodeling of biliary tissue. Although the DR shows apparently distinct mode of biliary extension depending on the type of liver injury, the key regulatory mechanism remains poorly understood. Here, we show that Lutheran (Lu)/Basal cell adhesion molecule (BCAM) regulates the morphogenesis of DR depending on liver disease models. Lu+ and Lu- biliary cells isolated from injured liver exhibit opposite phenotypes in cell motility and duct formation capacities in vitro. By overexpression of Lu, Lu- biliary cells acquire the phenotype of Lu+ biliary cells. Lu-deficient mice showed severe defects in DR. Our findings reveal a critical role of Lu in the control of phenotypic heterogeneity of DR in distinct liver disease models.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3,4,5, 6 and Supporting figure 5.

Article and author information

Author details

  1. Yasushi Miura

    Department of Regenerative Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Satoshi Matsui

    Department of Regenerative Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Naoko Miyata

    Department of Regenerative Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Kenichi Harada

    Department of Human Pathology, Kanazawa University, Kanazawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Yamato Kikkawa

    Department of Clinical Biochemistry, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Masaki Ohmuraya

    Department of Genetics, Hyogo College of Medicine, Hyogo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Kimi Araki

    Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Shinya Tsurusaki

    Department of Regenerative Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Hitoshi Okochi

    Department of Regenerative Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Nobuhito Goda

    Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Atsushi Miyajima

    Laboratory of Cell Growth and Differentiation, The University of Tokyo, Tokyo, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Minoru Tanaka

    Department of Regenerative Medicine, National Center for Global Health and Medicine, Tokyo, Japan
    For correspondence
    m-tanaka@ri.ncgm.go.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2500-7973

Funding

Japan Society for the Promotion of Science (26110007)

  • Minoru Tanaka

Japan Society for the Promotion of Science (26253023)

  • Atsushi Miyajima

Japan Society for the Promotion of Science (26110001)

  • Masaki Ohmuraya

Japan Agency for Medical Research and Development (JP17be0304201)

  • Minoru Tanaka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed according to institutional guidelines and approved by the Animal Care and Use committee of the Institute of Molecular and Cellular Biosciences, The University of Tokyo (approval numbers 2501, 2501-1, 2609,2706 and 3004), Kumatomo University (approval number A27-092), Hyogo College of Medicine (approval number 16-043, 16-046), and National Center for Global Health and Medicine Research Institute (approval number 15080, 16023, 17086 and 18069). Every effort was made to minimize animal suffering and to reduce the number of animals used.

Human subjects: The study using human samples was approved by the Kanazawa University Ethics Committee (approval number 305-4), and all of the analyzed samples are derived from patients who provided informed written consent for the use of their tissue samples in research.

Copyright

© 2018, Miura et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,742
    views
  • 269
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yasushi Miura
  2. Satoshi Matsui
  3. Naoko Miyata
  4. Kenichi Harada
  5. Yamato Kikkawa
  6. Masaki Ohmuraya
  7. Kimi Araki
  8. Shinya Tsurusaki
  9. Hitoshi Okochi
  10. Nobuhito Goda
  11. Atsushi Miyajima
  12. Minoru Tanaka
(2018)
Differential expression of Lutheran/BCAM regulates biliary tissue remodeling in ductular reaction during liver regeneration
eLife 7:e36572.
https://doi.org/10.7554/eLife.36572

Share this article

https://doi.org/10.7554/eLife.36572

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

    1. Developmental Biology
    2. Genetics and Genomics
    Mehul Vora, Jonathan Dietz ... Cathy Savage-Dunn
    Research Article

    Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the transforming growth factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.