1. Structural Biology and Molecular Biophysics
Download icon

A novel pH-dependent membrane peptide that binds to EphA2 and inhibits cell migration

  1. Daiane Santana Alves
  2. Justin M Westerfield
  3. Xiaojun Shi
  4. Vanessa P Nguyen
  5. Katherine M Stefanski
  6. Kristen R Booth
  7. Soyeon Kim
  8. Jennifer Morrell-Falvey
  9. Bing-Cheng Wang
  10. Steven M Abel
  11. Adam W Smith
  12. Francisco N Barrera  Is a corresponding author
  1. University of Tennessee, United States
  2. University of Akron, United States
  3. Case Western Reserve University, United States
Research Article
  • Cited 8
  • Views 1,942
  • Annotations
Cite this article as: eLife 2018;7:e36645 doi: 10.7554/eLife.36645

Abstract

Misregulation of the signaling axis formed by the receptor tyrosine kinase (RTK) EphA2 and its ligand, ephrinA1, causes aberrant cell-cell contacts that contribute to metastasis. Solid tumors are characterized by an acidic extracellular medium. We intend to take advantage of this tumor feature to design new molecules that specifically target tumors. We created a novel pH-dependent transmembrane peptide, TYPE7, by altering the sequence of the transmembrane domain of EphA2. TYPE7 is highly soluble and interacts with the surface of lipid membranes at neutral pH, while acidity triggers transmembrane insertion. TYPE7 binds to endogenous EphA2 and reduces Akt phosphorylation and cell migration as effectively as ephrinA1. Interestingly, we found large differences in juxtamembrane tyrosine phosphorylation and the extent of EphA2 clustering when compared TYPE7 with activation by ephrinA1. This work shows that it is possible to design new pH-triggered membrane peptides to activate RTK and gain insights on its activation mechanism.

Article and author information

Author details

  1. Daiane Santana Alves

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Justin M Westerfield

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3937-5833
  3. Xiaojun Shi

    Department of Chemistry, University of Akron, Akron, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8060-5880
  4. Vanessa P Nguyen

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Katherine M Stefanski

    Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kristen R Booth

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Soyeon Kim

    Department of Chemistry, University of Akron, Akron, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jennifer Morrell-Falvey

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9362-7528
  9. Bing-Cheng Wang

    Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Steven M Abel

    Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0491-8647
  11. Adam W Smith

    Department of Chemistry, University of Akron, Akron, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5216-9017
  12. Francisco N Barrera

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
    For correspondence
    fbarrera@utk.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5200-7891

Funding

National Institute of General Medical Sciences (R01GM120642)

  • Francisco N Barrera

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Patricia Bassereau, Institut Curie, France

Publication history

  1. Received: March 13, 2018
  2. Accepted: September 16, 2018
  3. Accepted Manuscript published: September 17, 2018 (version 1)
  4. Version of Record published: October 17, 2018 (version 2)
  5. Version of Record updated: August 30, 2019 (version 3)

Copyright

© 2018, Alves et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,942
    Page views
  • 324
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Clarissa L Durie et al.
    Research Article Updated

    Legionella pneumophila is an opportunistic pathogen that causes the potentially fatal pneumonia Legionnaires’ Disease. This infection and subsequent pathology require the Dot/Icm Type IV Secretion System (T4SS) to deliver effector proteins into host cells. Compared to prototypical T4SSs, the Dot/Icm assembly is much larger, containing ~27 different components including a core complex reported to be composed of five proteins: DotC, DotD, DotF, DotG, and DotH. Using single particle cryo-electron microscopy (cryo-EM), we report reconstructions of the core complex of the Dot/Icm T4SS that includes a symmetry mismatch between distinct structural features of the outer membrane cap (OMC) and periplasmic ring (PR). We present models of known core complex proteins, DotC, DotD, and DotH, and two structurally similar proteins within the core complex, DotK and Lpg0657. This analysis reveals the stoichiometry and contact interfaces between the key proteins of the Dot/Icm T4SS core complex and provides a framework for understanding a complex molecular machine.

    1. Structural Biology and Molecular Biophysics
    Connor J Thompson et al.
    Research Article Updated

    We demonstrate a combined experimental and computational approach for the quantitative characterization of lateral interactions between membrane-associated proteins. In particular, weak, lateral (cis) interactions between E-cadherin extracellular domains tethered to supported lipid bilayers, were studied using a combination of dynamic single-molecule Förster Resonance Energy Transfer (FRET) and kinetic Monte Carlo (kMC) simulations. Cadherins are intercellular adhesion proteins that assemble into clusters at cell-cell contacts through cis- and trans- (adhesive) interactions. A detailed and quantitative understanding of cis-clustering has been hindered by a lack of experimental approaches capable of detecting and quantifying lateral interactions between proteins on membranes. Here single-molecule intermolecular FRET measurements of wild-type E-cadherin and cis-interaction mutants combined with simulations demonstrate that both nonspecific and specific cis-interactions contribute to lateral clustering on lipid bilayers. Moreover, the intermolecular binding and dissociation rate constants are quantitatively and independently determined, demonstrating an approach that is generalizable for other interacting proteins.