A novel pH-dependent membrane peptide that binds to EphA2 and inhibits cell migration

Abstract

Misregulation of the signaling axis formed by the receptor tyrosine kinase (RTK) EphA2 and its ligand, ephrinA1, causes aberrant cell-cell contacts that contribute to metastasis. Solid tumors are characterized by an acidic extracellular medium. We intend to take advantage of this tumor feature to design new molecules that specifically target tumors. We created a novel pH-dependent transmembrane peptide, TYPE7, by altering the sequence of the transmembrane domain of EphA2. TYPE7 is highly soluble and interacts with the surface of lipid membranes at neutral pH, while acidity triggers transmembrane insertion. TYPE7 binds to endogenous EphA2 and reduces Akt phosphorylation and cell migration as effectively as ephrinA1. Interestingly, we found large differences in juxtamembrane tyrosine phosphorylation and the extent of EphA2 clustering when compared TYPE7 with activation by ephrinA1. This work shows that it is possible to design new pH-triggered membrane peptides to activate RTK and gain insights on its activation mechanism.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Daiane Santana Alves

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Justin M Westerfield

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3937-5833
  3. Xiaojun Shi

    Department of Chemistry, University of Akron, Akron, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8060-5880
  4. Vanessa P Nguyen

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Katherine M Stefanski

    Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Kristen R Booth

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Soyeon Kim

    Department of Chemistry, University of Akron, Akron, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jennifer Morrell-Falvey

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9362-7528
  9. Bing-Cheng Wang

    Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Steven M Abel

    Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0491-8647
  11. Adam W Smith

    Department of Chemistry, University of Akron, Akron, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5216-9017
  12. Francisco N Barrera

    Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, United States
    For correspondence
    fbarrera@utk.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5200-7891

Funding

National Institute of General Medical Sciences (R01GM120642)

  • Francisco N Barrera

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Alves et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,037
    views
  • 455
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daiane Santana Alves
  2. Justin M Westerfield
  3. Xiaojun Shi
  4. Vanessa P Nguyen
  5. Katherine M Stefanski
  6. Kristen R Booth
  7. Soyeon Kim
  8. Jennifer Morrell-Falvey
  9. Bing-Cheng Wang
  10. Steven M Abel
  11. Adam W Smith
  12. Francisco N Barrera
(2018)
A novel pH-dependent membrane peptide that binds to EphA2 and inhibits cell migration
eLife 7:e36645.
https://doi.org/10.7554/eLife.36645

Share this article

https://doi.org/10.7554/eLife.36645

Further reading

    1. Structural Biology and Molecular Biophysics
    Liliana R Teixeira, Radha Akella ... Elizabeth J Goldsmith
    Research Article

    Osmotic stress and chloride regulate the autophosphorylation and activity of the WNK1 and WNK3 kinase domains. The kinase domain of unphosphorylated WNK1 (uWNK1) is an asymmetric dimer possessing water molecules conserved in multiple uWNK1 crystal structures. Conserved waters are present in two networks, referred to here as conserved water networks 1 and 2 (CWN1 and CWN2). Here, we show that PEG400 applied to crystals of dimeric uWNK1 induces de-dimerization. Both the WNK1 the water networks and the chloride-binding site are disrupted by PEG400. CWN1 is surrounded by a cluster of pan-WNK-conserved charged residues. Here, we mutagenized these charges in WNK3, a highly active WNK isoform kinase domain, and WNK1, the isoform best studied crystallographically. Mutation of E314 in the Activation Loop of WNK3 (WNK3/E314Q and WNK3/E314A, and the homologous WNK1/E388A) enhanced the rate of autophosphorylation, and reduced chloride sensitivity. Other WNK3 mutants reduced the rate of autophosphorylation activity coupled with greater chloride sensitivity than wild-type. The water and chloride regulation thus appear linked. The lower activity of some mutants may reflect effects on catalysis. Crystallography showed that activating mutants introduced conformational changes in similar parts of the structure to those induced by PEG400. WNK activating mutations and crystallography support a role for CWN1 in WNK inhibition consistent with water functioning as an allosteric ligand.

    1. Structural Biology and Molecular Biophysics
    Jinsai Shang, Douglas J Kojetin
    Research Advance

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken—but do not prevent—the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.