Dynamics of human protein kinase Aurora A linked to drug selectivity

  1. Warintra Pitsawong
  2. Vanessa Buosi
  3. Renee Otten
  4. Roman V Agafonov
  5. Adelajda Zorba
  6. Nadja Kern
  7. Steffen Kutter
  8. Gunther Kern
  9. Ricardo AP Pádua
  10. Xavier Meniche
  11. Dorothee Kern  Is a corresponding author
  1. Howard Hughes Medical Institute, Brandeis University, United States
  2. University of Massachusetts Medical School, United States

Abstract

Protein kinases are major drug targets, but the development of highly-selective inhibitors has been challenging due to the similarity of their active sites. The observation of distinct structural states of the fully-conserved Asp-Phe-Gly (DFG) loop has put the concept of conformational selection for the DFG-state at the center of kinase drug discovery. Recently, it was shown that Gleevec selectivity for the Tyr-kinases Abl was instead rooted in conformational changes after drug binding. Here, we investigate whether protein dynamics after binding is a more general paradigm for drug selectivity by characterizing the binding of several approved drugs to the Ser/Thr-kinase Aurora A. Using a combination of biophysical techniques, we propose a universal drug-binding mechanism, that rationalizes selectivity, affinity and long on-target residence time for kinase inhibitors. These new concepts, where protein dynamics in the drug-bound state plays the crucial role, can be applied to inhibitor design of targets outside the kinome.

Data availability

Diffraction data have been deposited in PDB under the accession codes 6CPE, 6CPF, 6CPG.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Warintra Pitsawong

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5438-1783
  2. Vanessa Buosi

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Renee Otten

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7342-6131
  4. Roman V Agafonov

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Adelajda Zorba

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4452-8419
  6. Nadja Kern

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Steffen Kutter

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gunther Kern

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ricardo AP Pádua

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Xavier Meniche

    Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Dorothee Kern

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    For correspondence
    dkern@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7631-8328

Funding

Howard Hughes Medical Institute

  • Dorothee Kern

National Institutes of Health (GM100966-01)

  • Dorothee Kern

U.S. Department of Energy (DE-FG02-05ER15699)

  • Dorothee Kern

Damon Runyon Cancer Research Foundation (DRG-2114-12)

  • Renee Otten

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philip A Cole, Harvard Medical School, United States

Publication history

  1. Received: March 14, 2018
  2. Accepted: June 12, 2018
  3. Accepted Manuscript published: June 14, 2018 (version 1)
  4. Version of Record published: July 20, 2018 (version 2)

Copyright

© 2018, Pitsawong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,026
    Page views
  • 726
    Downloads
  • 27
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Warintra Pitsawong
  2. Vanessa Buosi
  3. Renee Otten
  4. Roman V Agafonov
  5. Adelajda Zorba
  6. Nadja Kern
  7. Steffen Kutter
  8. Gunther Kern
  9. Ricardo AP Pádua
  10. Xavier Meniche
  11. Dorothee Kern
(2018)
Dynamics of human protein kinase Aurora A linked to drug selectivity
eLife 7:e36656.
https://doi.org/10.7554/eLife.36656

Further reading

    1. Cancer Biology
    2. Cell Biology
    Elena Tomas Bort, Megan Daisy Joseph ... Richard Philip Grose
    Research Article

    Pancreatic ductal adenocarcinoma (PDAC) continues to show no improvement in survival rates. One aspect of PDAC is elevated ATP levels, pointing to the purinergic axis as a potential attractive therapeutic target. Mediated in part by highly druggable extracellular proteins, this axis plays essential roles in fibrosis, inflammation response and immune function. Analysing the main members of the PDAC extracellular purinome using publicly available databases discerned which members may impact patient survival. P2RY2 presents as the purinergic gene with the strongest association with hypoxia, the highest cancer cell-specific expression and the strongest impact on overall survival. Invasion assays using a 3D spheroid model revealed P2Y2 to be critical in facilitating invasion driven by extracellular ATP. Using genetic modification and pharmacological strategies we demonstrate mechanistically that this ATP-driven invasion requires direct protein-protein interactions between P2Y2 and αV integrins. DNA-PAINT super-resolution fluorescence microscopy reveals that P2Y2 regulates the amount and distribution of integrin αV in the plasma membrane. Moreover, receptor-integrin interactions were required for effective downstream signalling, leading to cancer cell invasion. This work elucidates a novel GPCR-integrin interaction in cancer invasion, highlighting its potential for therapeutic targeting.

    1. Cancer Biology
    Kexin Li, Qingji Huo ... Hiroki Yokota
    Research Article

    Osteosarcoma (OS) is the common primary bone cancer that affects mostly children and young adults. To augment the standard-of-care chemotherapy, we examined the possibility of protein-based therapy using mesenchymal stem cells (MSCs)-derived proteomes and OS-elevated proteins. While a conditioned medium (CM), collected from MSCs, did not present tumor-suppressing ability, the activation of PKA converted MSCs into induced tumor-suppressing cells (iTSCs). In a mouse model, the direct and hydrogel-assisted administration of CM inhibited tumor-induced bone destruction, and its effect was additive with cisplatin. CM was enriched with proteins such as calreticulin, which acted as an extracellular tumor suppressor by interacting with CD47. Notably, the level of CALR transcripts was elevated in OS tissues, together with other tumor-suppressing proteins, including histone H4, and PCOLCE. PCOLCE acted as an extracellular tumor-suppressing protein by interacting with amyloid precursor protein, a prognostic OS marker with poor survival. The results supported the possibility of employing a paradoxical strategy of utilizing OS transcriptomes for the treatment of OS.