Dynamics of human protein kinase Aurora A linked to drug selectivity

  1. Warintra Pitsawong
  2. Vanessa Buosi
  3. Renee Otten
  4. Roman V Agafonov
  5. Adelajda Zorba
  6. Nadja Kern
  7. Steffen Kutter
  8. Gunther Kern
  9. Ricardo AP Pádua
  10. Xavier Meniche
  11. Dorothee Kern  Is a corresponding author
  1. Howard Hughes Medical Institute, Brandeis University, United States
  2. University of Massachusetts Medical School, United States

Abstract

Protein kinases are major drug targets, but the development of highly-selective inhibitors has been challenging due to the similarity of their active sites. The observation of distinct structural states of the fully-conserved Asp-Phe-Gly (DFG) loop has put the concept of conformational selection for the DFG-state at the center of kinase drug discovery. Recently, it was shown that Gleevec selectivity for the Tyr-kinases Abl was instead rooted in conformational changes after drug binding. Here, we investigate whether protein dynamics after binding is a more general paradigm for drug selectivity by characterizing the binding of several approved drugs to the Ser/Thr-kinase Aurora A. Using a combination of biophysical techniques, we propose a universal drug-binding mechanism, that rationalizes selectivity, affinity and long on-target residence time for kinase inhibitors. These new concepts, where protein dynamics in the drug-bound state plays the crucial role, can be applied to inhibitor design of targets outside the kinome.

Data availability

Diffraction data have been deposited in PDB under the accession codes 6CPE, 6CPF, 6CPG.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Warintra Pitsawong

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5438-1783
  2. Vanessa Buosi

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Renee Otten

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7342-6131
  4. Roman V Agafonov

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Adelajda Zorba

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4452-8419
  6. Nadja Kern

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Steffen Kutter

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gunther Kern

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ricardo AP Pádua

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Xavier Meniche

    Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Dorothee Kern

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    For correspondence
    dkern@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7631-8328

Funding

Howard Hughes Medical Institute

  • Dorothee Kern

National Institutes of Health (GM100966-01)

  • Dorothee Kern

U.S. Department of Energy (DE-FG02-05ER15699)

  • Dorothee Kern

Damon Runyon Cancer Research Foundation (DRG-2114-12)

  • Renee Otten

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philip A Cole, Harvard Medical School, United States

Version history

  1. Received: March 14, 2018
  2. Accepted: June 12, 2018
  3. Accepted Manuscript published: June 14, 2018 (version 1)
  4. Version of Record published: July 20, 2018 (version 2)

Copyright

© 2018, Pitsawong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,221
    Page views
  • 743
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Warintra Pitsawong
  2. Vanessa Buosi
  3. Renee Otten
  4. Roman V Agafonov
  5. Adelajda Zorba
  6. Nadja Kern
  7. Steffen Kutter
  8. Gunther Kern
  9. Ricardo AP Pádua
  10. Xavier Meniche
  11. Dorothee Kern
(2018)
Dynamics of human protein kinase Aurora A linked to drug selectivity
eLife 7:e36656.
https://doi.org/10.7554/eLife.36656

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Megan E Kelley, Adi Y Berman ... Gregory P Way
    Research Article

    Drug resistance is a challenge in anticancer therapy. In many cases, cancers can be resistant to the drug prior to exposure, i.e., possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug resistance. To test this hypothesis, we used HCT116 cells, a mismatch repair-deficient cancer cell line, to isolate clones that were resistant or sensitive to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then expanded these clones and measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features that differed between resistant and sensitive cells. We used these features to generate a morphological signature of bortezomib resistance. We then employed this morphological signature to analyze a set of HCT116 clones (five resistant and five sensitive) that had not been included in the signature training dataset, and correctly predicted sensitivity to bortezomib in seven cases, in the absence of drug treatment. This signature predicted bortezomib resistance better than resistance to other drugs targeting the ubiquitin-proteasome system. Our results establish a proof-of-concept framework for the unbiased analysis of drug resistance using high-content microscopy of cancer cells, in the absence of drug treatment.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Xiaoquan Zhu, Chao Chen ... Yanyang Zhao
    Research Article Updated

    Identification oncogenes is fundamental to revealing the molecular basis of cancer. Here, we found that FOXP2 is overexpressed in human prostate cancer cells and prostate tumors, but its expression is absent in normal prostate epithelial cells and low in benign prostatic hyperplasia. FOXP2 is a FOX transcription factor family member and tightly associated with vocal development. To date, little is known regarding the link of FOXP2 to prostate cancer. We observed that high FOXP2 expression and frequent amplification are significantly associated with high Gleason score. Ectopic expression of FOXP2 induces malignant transformation of mouse NIH3T3 fibroblasts and human prostate epithelial cell RWPE-1. Conversely, FOXP2 knockdown suppresses the proliferation of prostate cancer cells. Transgenic overexpression of FOXP2 in the mouse prostate causes prostatic intraepithelial neoplasia. Overexpression of FOXP2 aberrantly activates oncogenic MET signaling and inhibition of MET signaling effectively reverts the FOXP2-induced oncogenic phenotype. CUT&Tag assay identified FOXP2-binding sites located in MET and its associated gene HGF. Additionally, the novel recurrent FOXP2-CPED1 fusion identified in prostate tumors results in high expression of truncated FOXP2, which exhibit a similar capacity for malignant transformation. Together, our data indicate that FOXP2 is involved in tumorigenicity of prostate.