Dynamics of human protein kinase Aurora A linked to drug selectivity

  1. Warintra Pitsawong
  2. Vanessa Buosi
  3. Renee Otten
  4. Roman V Agafonov
  5. Adelajda Zorba
  6. Nadja Kern
  7. Steffen Kutter
  8. Gunther Kern
  9. Ricardo AP Pádua
  10. Xavier Meniche
  11. Dorothee Kern  Is a corresponding author
  1. Howard Hughes Medical Institute, Brandeis University, United States
  2. University of Massachusetts Medical School, United States

Abstract

Protein kinases are major drug targets, but the development of highly-selective inhibitors has been challenging due to the similarity of their active sites. The observation of distinct structural states of the fully-conserved Asp-Phe-Gly (DFG) loop has put the concept of conformational selection for the DFG-state at the center of kinase drug discovery. Recently, it was shown that Gleevec selectivity for the Tyr-kinases Abl was instead rooted in conformational changes after drug binding. Here, we investigate whether protein dynamics after binding is a more general paradigm for drug selectivity by characterizing the binding of several approved drugs to the Ser/Thr-kinase Aurora A. Using a combination of biophysical techniques, we propose a universal drug-binding mechanism, that rationalizes selectivity, affinity and long on-target residence time for kinase inhibitors. These new concepts, where protein dynamics in the drug-bound state plays the crucial role, can be applied to inhibitor design of targets outside the kinome.

Data availability

Diffraction data have been deposited in PDB under the accession codes 6CPE, 6CPF, 6CPG.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Warintra Pitsawong

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5438-1783
  2. Vanessa Buosi

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Renee Otten

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7342-6131
  4. Roman V Agafonov

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Adelajda Zorba

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4452-8419
  6. Nadja Kern

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Steffen Kutter

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Gunther Kern

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Ricardo AP Pádua

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Xavier Meniche

    Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Dorothee Kern

    Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    For correspondence
    dkern@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7631-8328

Funding

Howard Hughes Medical Institute

  • Dorothee Kern

National Institutes of Health (GM100966-01)

  • Dorothee Kern

U.S. Department of Energy (DE-FG02-05ER15699)

  • Dorothee Kern

Damon Runyon Cancer Research Foundation (DRG-2114-12)

  • Renee Otten

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Philip A Cole, Harvard Medical School, United States

Version history

  1. Received: March 14, 2018
  2. Accepted: June 12, 2018
  3. Accepted Manuscript published: June 14, 2018 (version 1)
  4. Version of Record published: July 20, 2018 (version 2)

Copyright

© 2018, Pitsawong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,396
    views
  • 772
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Warintra Pitsawong
  2. Vanessa Buosi
  3. Renee Otten
  4. Roman V Agafonov
  5. Adelajda Zorba
  6. Nadja Kern
  7. Steffen Kutter
  8. Gunther Kern
  9. Ricardo AP Pádua
  10. Xavier Meniche
  11. Dorothee Kern
(2018)
Dynamics of human protein kinase Aurora A linked to drug selectivity
eLife 7:e36656.
https://doi.org/10.7554/eLife.36656

Share this article

https://doi.org/10.7554/eLife.36656

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.

    1. Cancer Biology
    2. Cell Biology
    Julian J A Hoving, Elizabeth Harford-Wright ... Alison C Lloyd
    Research Article

    Collective cell migration is fundamental for the development of organisms and in the adult, for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during rat Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell-surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective Schwann cell migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased Schwann cell collective migration and increased clustering of Schwann cells within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.