H3.3K27M mutant proteins reprogram epigenome by sequestering the PRC2 complex to poised enhancers

  1. Dong Fang
  2. Haiyun Gan
  3. Liang Cheng
  4. Jeong-Heon Lee
  5. Hui Zhou
  6. Jann N Sarkaria
  7. David J Daniels
  8. Zhiguo Zhang  Is a corresponding author
  1. Columbia University, United States
  2. Mayo Clinic, United States

Abstract

Expression of histone H3.3K27M mutant proteins in human diffuse intrinsic pontine glioma (DIPG) results in a global reduction of tri-methylation of H3K27 (H3K27me3), and paradoxically, H3K27me3 peaks remain at hundreds of genomic loci, a dichotomous change that lacks mechanistic insights. Here we show that the PRC2 complex is sequestered at poised enhancers, but not at active promoters with high levels of H3.3K27M proteins, thereby contributing to the global reduction of H3K27me3. Moreover, the levels of H3.3K27M proteins are low at the retained H3K27me3 peaks and consequently having minimal effects on the PRC2 activity at these loci. H3K27me3-mediated silencing at specific tumor suppressor genes, including Wilms Tumor 1, promotes proliferation of DIPG cells. These results support a model in which the PRC2 complex is redistributed to poised enhancers in H3.3K27M mutant cells and contributes to tumorigenesis in part by locally enhancing H3K27 trimethylation, and hence silencing of tumor suppressor genes.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE94834

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Dong Fang

    Department of Pediatrics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Haiyun Gan

    Department of Pediatrics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Liang Cheng

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeong-Heon Lee

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hui Zhou

    Department of Pediatrics, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jann N Sarkaria

    Department of Radiation Oncology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David J Daniels

    Department of Neurosurgery, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zhiguo Zhang

    Department of Pediatrics, Columbia University, New York, United States
    For correspondence
    zz2401@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9451-2685

Funding

National Institutes of Health (CA204297)

  • Zhiguo Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jerry L Workman, Stowers Institute for Medical Research, United States

Version history

  1. Received: March 15, 2018
  2. Accepted: June 21, 2018
  3. Accepted Manuscript published: June 22, 2018 (version 1)
  4. Version of Record published: July 5, 2018 (version 2)

Copyright

© 2018, Fang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,688
    views
  • 789
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dong Fang
  2. Haiyun Gan
  3. Liang Cheng
  4. Jeong-Heon Lee
  5. Hui Zhou
  6. Jann N Sarkaria
  7. David J Daniels
  8. Zhiguo Zhang
(2018)
H3.3K27M mutant proteins reprogram epigenome by sequestering the PRC2 complex to poised enhancers
eLife 7:e36696.
https://doi.org/10.7554/eLife.36696

Share this article

https://doi.org/10.7554/eLife.36696

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.