1. Computational and Systems Biology
  2. Physics of Living Systems
Download icon

The Ca2+ transient as a feedback sensor controlling cardiomyocyte ionic conductances in mouse populations

  1. Colin M Rees
  2. Jun-Hai Yang
  3. Marc Santolini
  4. Aldons J Lusis
  5. James N Weiss
  6. Alain Karma  Is a corresponding author
  1. Northeastern University, United States
  2. University of California, Los Angeles, United States
Research Article
  • Cited 10
  • Views 1,233
  • Annotations
Cite this article as: eLife 2018;7:e36717 doi: 10.7554/eLife.36717

Abstract

Conductances of ion channels and transporters controlling cardiac excitation may vary in a population of subjects with different cardiac gene expression patterns. However, the amount of variability and its origin are not quantitatively known. We propose a new conceptual approach to predict this variability that consists of finding combinations of conductances generating a normal intracellular Ca2+ transient without any constraint on the action potential. Furthermore, we validate experimentally its predictions using the Hybrid Mouse Diversity Panel, a model system of genetically diverse mouse strains that allows us to quantify inter-subject versus intra-subject variability. The method predicts that conductances of inward Ca2+ and outward K+ currents compensate each other to generate a normal Ca2+ transient in good quantitative agreement with current measurements in ventricular myocytes from hearts of different isogenic strains. Our results suggest that a feedback mechanism sensing the aggregate Ca2+ transient of the heart suffices to regulate ionic conductances.

Data availability

Gene expression data has been deposited in GEO under accession code GSE48760

The following previously published data sets were used

Article and author information

Author details

  1. Colin M Rees

    Physics Department, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jun-Hai Yang

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marc Santolini

    Physics Department, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1491-0120
  4. Aldons J Lusis

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. James N Weiss

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alain Karma

    Physics Department, Northeastern University, Boston, United States
    For correspondence
    a.karma@northeastern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7032-9862

Funding

National Heart, Lung, and Blood Institute

  • Colin M Rees
  • Jun-Hai Yang
  • Marc Santolini
  • Aldons J Lusis
  • James N Weiss
  • Alain Karma

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was approved by the UCLA Chancellor's Animal Research Committee (ARC 2003-063-23B) and performed in accordance with the Guide for the Care and Use of Laboratory Animals published by the United States National Institutes of Health (NIH Publication No. 85-23, revised 1996) and with UCLA Policy 990 on the Use of Laboratory Animal Subjects in Research (revised 2010).

Reviewing Editor

  1. José D Faraldo-Gómez, National Heart, Lung and Blood Institute, National Institutes of Health, United States

Publication history

  1. Received: March 16, 2018
  2. Accepted: September 24, 2018
  3. Accepted Manuscript published: September 25, 2018 (version 1)
  4. Version of Record published: October 29, 2018 (version 2)

Copyright

© 2018, Rees et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,233
    Page views
  • 174
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Lucy Ham et al.
    Research Article Updated

    Single-cell expression profiling opens up new vistas on cellular processes. Extensive cell-to-cell variability at the transcriptomic and proteomic level has been one of the stand-out observations. Because most experimental analyses are destructive we only have access to snapshot data of cellular states. This loss of temporal information presents significant challenges for inferring dynamics, as well as causes of cell-to-cell variability. In particular, we typically cannot separate dynamic variability from within cells (‘intrinsic noise’) from variability across the population (‘extrinsic noise’). Here, we make this non-identifiability mathematically precise, allowing us to identify new experimental set-ups that can assist in resolving this non-identifiability. We show that multiple generic reporters from the same biochemical pathways (e.g. mRNA and protein) can infer magnitudes of intrinsic and extrinsic transcriptional noise, identifying sources of heterogeneity. Stochastic simulations support our theory, and demonstrate that ‘pathway-reporters’ compare favourably to the well-known, but often difficult to implement, dual-reporter method.

    1. Computational and Systems Biology
    2. Neuroscience
    Cathy S Chen et al.
    Research Article

    Sex-based modulation of cognitive processes could set the stage for individual differences in vulnerability to neuropsychiatric disorders. While value-based decision making processes in particular have been proposed to be influenced by sex differences, the overall correct performance in decision making tasks often show variable or minimal differences across sexes. Computational tools allow us to uncover latent variables that define different decision making approaches, even in animals with similar correct performance. Here, we quantify sex differences in mice in the latent variables underlying behavior in a classic value-based decision making task: a restless 2-armed bandit. While male and female mice had similar accuracy, they achieved this performance via different patterns of exploration. Male mice tended to make more exploratory choices overall, largely because they appeared to get 'stuck' in exploration once they had started. Female mice tended to explore less but learned more quickly during exploration. Together, these results suggest that sex exerts stronger influences on decision making during periods of learning and exploration than during stable choices. Exploration during decision making is altered in people diagnosed with addictions, depression, and neurodevelopmental disabilities, pinpointing the neural mechanisms of exploration as a highly translational avenue for conferring sex-modulated vulnerability to neuropsychiatric diagnoses.