1. Computational and Systems Biology
  2. Physics of Living Systems
Download icon

The Ca2+ transient as a feedback sensor controlling cardiomyocyte ionic conductances in mouse populations

  1. Colin M Rees
  2. Jun-Hai Yang
  3. Marc Santolini
  4. Aldons J Lusis
  5. James N Weiss
  6. Alain Karma  Is a corresponding author
  1. Northeastern University, United States
  2. University of California, Los Angeles, United States
Research Article
  • Cited 7
  • Views 1,009
  • Annotations
Cite this article as: eLife 2018;7:e36717 doi: 10.7554/eLife.36717

Abstract

Conductances of ion channels and transporters controlling cardiac excitation may vary in a population of subjects with different cardiac gene expression patterns. However, the amount of variability and its origin are not quantitatively known. We propose a new conceptual approach to predict this variability that consists of finding combinations of conductances generating a normal intracellular Ca2+ transient without any constraint on the action potential. Furthermore, we validate experimentally its predictions using the Hybrid Mouse Diversity Panel, a model system of genetically diverse mouse strains that allows us to quantify inter-subject versus intra-subject variability. The method predicts that conductances of inward Ca2+ and outward K+ currents compensate each other to generate a normal Ca2+ transient in good quantitative agreement with current measurements in ventricular myocytes from hearts of different isogenic strains. Our results suggest that a feedback mechanism sensing the aggregate Ca2+ transient of the heart suffices to regulate ionic conductances.

Article and author information

Author details

  1. Colin M Rees

    Physics Department, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jun-Hai Yang

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marc Santolini

    Physics Department, Northeastern University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1491-0120
  4. Aldons J Lusis

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. James N Weiss

    Department of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alain Karma

    Physics Department, Northeastern University, Boston, United States
    For correspondence
    a.karma@northeastern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7032-9862

Funding

National Heart, Lung, and Blood Institute

  • Colin M Rees
  • Jun-Hai Yang
  • Marc Santolini
  • Aldons J Lusis
  • James N Weiss
  • Alain Karma

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was approved by the UCLA Chancellor's Animal Research Committee (ARC 2003-063-23B) and performed in accordance with the Guide for the Care and Use of Laboratory Animals published by the United States National Institutes of Health (NIH Publication No. 85-23, revised 1996) and with UCLA Policy 990 on the Use of Laboratory Animal Subjects in Research (revised 2010).

Reviewing Editor

  1. José D Faraldo-Gómez, National Heart, Lung and Blood Institute, National Institutes of Health, United States

Publication history

  1. Received: March 16, 2018
  2. Accepted: September 24, 2018
  3. Accepted Manuscript published: September 25, 2018 (version 1)
  4. Version of Record published: October 29, 2018 (version 2)

Copyright

© 2018, Rees et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,009
    Page views
  • 164
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Abel Torres Espín et al.
    Tools and Resources

    Biomedical data are usually analyzed at the univariate level, focused on a single primary outcome measure to provide insight into systems biology, complex disease states, and precision medicine opportunities. More broadly, these complex biological and disease states can be detected as common factors emerging from the relationships among measured variables using multivariate approaches. 'Syndromics' refers to an analytical framework for measuring disease states using principal component analysis and related multivariate statistics as primary tools for extracting underlying disease patterns. A key part of the syndromic workflow is the interpretation, the visualization, and the study of robustness of the main components that characterize the disease space. We present a new software package, syndRomics, an open-source R package with utility for component visualization, interpretation, and stability for syndromic analysis. We document the implementation of syndRomics and illustrate the use of the package in case studies of neurological trauma data.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Anastasia A Minervina et al.
    Short Report Updated

    COVID-19 is a global pandemic caused by the SARS-CoV-2 coronavirus. T cells play a key role in the adaptive antiviral immune response by killing infected cells and facilitating the selection of virus-specific antibodies. However, neither the dynamics and cross-reactivity of the SARS-CoV-2-specific T-cell response nor the diversity of resulting immune memory is well understood. In this study, we use longitudinal high-throughput T-cell receptor (TCR) sequencing to track changes in the T-cell repertoire following two mild cases of COVID-19. In both donors, we identified CD4+ and CD8+ T-cell clones with transient clonal expansion after infection. We describe characteristic motifs in TCR sequences of COVID-19-reactive clones and show preferential occurrence of these motifs in publicly available large dataset of repertoires from COVID-19 patients. We show that in both donors, the majority of infection-reactive clonotypes acquire memory phenotypes. Certain T-cell clones were detected in the memory fraction at the pre-infection time point, suggesting participation of pre-existing cross-reactive memory T cells in the immune response to SARS-CoV-2.