1. Biochemistry and Chemical Biology
Download icon

Control of cyclic oligoadenylate synthesis in a type III CRISPR system

Research Article
  • Cited 58
  • Views 2,154
  • Annotations
Cite this article as: eLife 2018;7:e36734 doi: 10.7554/eLife.36734

Abstract

The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3' end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The 'RNA shredding' activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Christophe Rouillon

    Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Januka S Athukoralage

    Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Shirley Graham

    Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2608-3815
  4. Sabine Grüschow

    Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Malcolm F White

    Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
    For correspondence
    mfw2@st-and.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1543-9342

Funding

Biotechnology and Biological Sciences Research Council (Project grant BB/M000400/1)

  • Christophe Rouillon
  • Malcolm F White

Royal Society (Challenge grant CH160014)

  • Sabine Grüschow

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gisela Storz, National Institute of Child Health and Human Development, United States

Publication history

  1. Received: March 16, 2018
  2. Accepted: July 1, 2018
  3. Accepted Manuscript published: July 2, 2018 (version 1)
  4. Version of Record published: July 19, 2018 (version 2)

Copyright

© 2018, Rouillon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,154
    Page views
  • 392
    Downloads
  • 58
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Jonathan G Van Vranken et al.
    Tools and Resources

    Recent advances in mass spectrometry (MS) have enabled quantitative proteomics to become a powerful tool in the field of drug discovery, especially when applied toward proteome-wide target engagement studies. Similar to temperature gradients, increasing concentrations of organic solvents stimulate unfolding and precipitation of the cellular proteome. This property can be influenced by physical association with ligands and other molecules, making individual proteins more or less susceptible to solvent-induced denaturation. Herein, we report the development of proteome-wide solvent shift assays by combining the principles of solvent-induced precipitation (Zhang et al., 2020) with modern quantitative proteomics. Using this approach, we developed solvent proteome profiling (SPP), which is capable of establishing target engagement through analysis of SPP denaturation curves. We readily identified the specific targets of compounds with known mechanisms of action. As a further efficiency boost, we applied the concept of area under the curve analysis to develop solvent proteome integral solubility alteration (solvent-PISA) and demonstrate that this approach can serve as a reliable surrogate for SPP. We propose that by combining SPP with alternative methods, like thermal proteome profiling, it will be possible to increase the absolute number of high-quality melting curves that are attainable by either approach individually, thereby increasing the fraction of the proteome that can be screened for evidence of ligand binding.

    1. Biochemistry and Chemical Biology
    2. Medicine
    Dmitry Ter-Ovanesyan et al.
    Tools and Resources Updated

    Extracellular vesicles (EVs) are released by all cells into biofluids and hold great promise as reservoirs of disease biomarkers. One of the main challenges in studying EVs is a lack of methods to quantify EVs that are sensitive enough and can differentiate EVs from similarly sized lipoproteins and protein aggregates. We demonstrate the use of ultrasensitive, single-molecule array (Simoa) assays for the quantification of EVs using three widely expressed transmembrane proteins: the tetraspanins CD9, CD63, and CD81. Using Simoa to measure these three EV markers, as well as albumin to measure protein contamination, we were able to compare the relative efficiency and purity of several commonly used EV isolation methods in plasma and cerebrospinal fluid (CSF): ultracentrifugation, precipitation, and size exclusion chromatography (SEC). We further used these assays, all on one platform, to improve SEC isolation from plasma and CSF. Our results highlight the utility of quantifying EV proteins using Simoa and provide a rapid framework for comparing and improving EV isolation methods from biofluids.